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Preface 

This is a more conceptual presentation about 
the motivation behind our AIST-14 project:  

“Data Environment for Rapid Exploration and 
Characterization of Hydrometeorological 

Organized Systems”, DERECHOS. 
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Ultimate Goal 

Optimize research quality and productivity by 
  Alleviating researchers from data management 
chores, 
  Enabling researchers to perform integrative 
analysis involving diverse datasets, 
  Providing improved means and assurance to 
software/research quality and traceability, 
  Facilitating seamless cross-discipline and cross-
institution collaborations, and 
  Easing the implementation of automated 
knowledge extraction techniques. 
 Machine/Deep Learning 
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Vision 

Inspired by the “Ultimate Goal” we seek to 
construct a system that allows researchers to 
  Conduct (moderately complex) Earth Science 

data analysis with real-time response, 
  E.g. aggregate statistics, conditional subsetting, etc. 

  Analyze diverse datasets in a uniform manner 
independent of data (file) format, 

  Have better assurance in software quality and 
analysis/research reproducibility, 

  Collaborate seamlessly with colleagues,  
  Carry out machine learning without spending 

disproportional effort in preparing data, and 
  Systemize machine learning to achieve deep 

learning. 

Big Data 
Challenges 
  Volume 
  Variety 
  Velocity 
  Veracity 
  Value 
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Scaling Variety 

  Scalability – 
  The capacity to be changed in size or scale. 
  The ability of something, especially a computer 
system, to adapt to increased demands. 
  Resources consumed is linearly (or better) 
proportional to the quantity and/or complexity 
involved. 

  Current efforts appear to focus mostly on 
scalability in Volume. 
  We believe scalability in Variety is the key. 
  Data Independence principle is crucial for 
scaling Variety. 
 Data independence is indispensable for data 
interoperability. 
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  Two levels of data independence in a 
database management system, DBMS. 
  Physical data independence – between physical 
representation and logical representation 
  Logical data independence – between logical 
representation and application views 

Physical Level 

Logical Level 

App. View 1 App. View 2 App. View n Application Level 
Logical data 

independence 

Physical data 
independence 

Data Independence in DBMSs 



Current File-based Practice 

 Partial physical data independence is 
achieved with “standard file formats” via 
API, e.g. HDF, GRIB. 
  There are at least three (3) logical 
representations: Grid, Swath, and Point. 
 But, in reality, it is way more complicated 
than 3. 
 Non-uniform granularity. 
 Varied “profiles”. 

It is impossible to achieve “variety scalability” 
with the file-based approach! 
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Consequences of File-Based Practice 

The file-based practice 
  Necessitates download* for any extensive 
analysis, 
  Induces duplications in compute and storage 
resources, 
  Entails individualized data management and 
analysis algorithm development,  
  Discourages software reuse and complicates 
quality assurance, 
  Hampers software and research traceability, 
and 
  Erects collaboration barriers. 
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Technical Challenges 

 Choice of technology 
  Traditional HPC vs. shared-nothing architecture 
(SNA) 
 MapReduce/Hadoop, Spark, and SciDB 

 Design issues 
 Data placement alignment 
 Unified data representation 
 Supportive transformations 

Regridding/Remapping 

6/15/16 



SciDB 

SciDB, by Paradigm4, is an all-in-one data management and 
advanced analytics platform that features: 

  Complex analytics inside a next-generation parallel array 
database (i.e. not row-based or column-based like RDBMS’s 
based on table data model). 
  Supports extensive and flexible algebra operators that can be 

efficiently “wired” together for more complex operations. 

  Based on the “shared nothing architecture” for data 
parallelism, data versioning and provenance to support 
science applications. 

  Community version is open source. 
  Extensible through user-defined types, functions and operator. 
  A better performer than Hadoop (MapReduce), 2-10 times 

faster, in almost all benchmarks that we have performed so 
far. 
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Array is not enough! 

Although “array” is definitely a better model 
for scientific data,  

it is not sufficient for Earth Science. 
”Logical data independence” needs to be 

extended. 
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UNIFIED DATA 
REPRESENTATION 
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N. America 
is here! 

Simplistic Data Placement (Layout) 
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Better Load Balance – Smaller Chunks 
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A Step Beyond Data Placement 

Data Placement (Co-)Alignment 
  In most cases, Earth science analysis requires spatiotemporal 

coincidence. For example: 
  Getting the environment conditions, e.g. pressure, temperature, 

humidity, etc., of where and when there is precipitation (conditional 
subsetting), 
  Comparing outputs from different models, and 
  Comparing the same geophysical quantity obtained from different 

modes of observations, instruments, and/or retrievals. 
  If placements of required data are misaligned, data 

movements within the cluster (repartitioning on-the-fly) ensue. 
  Required partitions for dataset A reside on a different set of nodes for 

those from dataset B. 
  If placements of different datasets can be aligned for the 

majority of analysis cases, we achieve better performance by 
avoiding expensive repartition operations. 
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Optimal Partition 

  Since most of our analyses require spatial or temporal coincidences, 
or both, data should be partitioned so that data for the same 
spatiotemporal subspace reside on the same node of the SNA, as 
demonstrated in the schematic diagram below (for space only).  
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As one can see, it will be 
tedious to partition datasets in 
the case-by-case manner 
illustrated on the left. 
  How can we generalize it, so 

the partitioning may be 
simplified and automated to 
guarantee placement co-
alignment? 



Hierarchical Triangular Mesh 

  Proposed solution: Hierarchical Triangular Mesh (HTM) 
  Start with an inscribing octahedron of a sphere. 
  Bisect each edge. 
  Bring the bisecting points to inscribe the sphere to form 4 
smaller spherical triangles. 
  Repeat 
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Advantage of HTM 

  Earth’s 2D surface is indexed with 1D indices and form a 
quad tree. 
  An HTM index, HID, can be assigned to every geolocation. 

  The resolution reaches ≲1 m, at the 24th level (requiring 49 
bits). 
  If a level of the quad tree is chosen to be the chunk 

length for partitioning, all levels below it (same 
approximate geographical neighborhood) will reside on 
the same node. 
  Thus, using the HTM index allows us to simultaneously 

  Geo-reference different data representations in a uniform 
way, and 
  Ensure data placement (co-)alignment for diverse datasets. 
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HTM Quadtree and Numbering 
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HTM Quadtree 
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Anticipated Complications 

  Algorithms for calculating quantities that require 
a neighborhood, e.g. derivatives or the Sobel 
operator, needs to be reformulated. 
  The principles for deriving these formulae are known. 

  Earth scientists currently have little experience 
with HTM indexing. 
  Even when the aforementioned quantities can be 
efficiently calculated, scientists would want to check 
them out with their established practices. 
  Therefore, we need to be able to convert back and 
forth easily and efficiently between HTM indexing and 
original indexing of the source arrays! 

 A solution (conservative indexing) to this has been found 
and implemented! 
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SCIDB VERSUS SPARK+HDFS 
Impact of Data Placement Misalignment 
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“Boundary Conditions” 

The following comparisons were performed 
before HTM wasimplemented in SciDB. 
Thus, it was necessary to transform and 

homogenize the arrays into the same “shape” 
– the Data Preparation step. 
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Impact of Data Misalignment 

  Investigate impact of data placement 
misalignment and 
 Compare SciDB versus Spark performance. 
 MERRA (only CONUS) and NMQ data are 
“massaged” to have the same shape. 
 1 MERRA array co-aligned with NMQ and 1 not. 

 More complete examination than what was 
done for the “Data Container Project” and 
presented at AGU FM 2015. 
 Data preparation queries added to Spark+HDFS 
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SciDB vs. Spark: Queries 
 

Perform the following queries in both SciDB and Spark: 
  Data Preparation 

  Q1: Resample MERRA MAT1NX array to 0.1° resolution in 
both latitude and longitude. 
  Q2: Coarsen NMQ array also to 0.1° resolution.  

  Data Analysis 
  Q3: Repartition resampled MERRA array on the fly to 
compare with precipitation rates of coarsened NMQ array.  

  Combining both Query 4 and 5 in one query. 

  Q4: Align resampled MERRA and coarsened NMQ array. 
  Q5: Compare precipitation rates using co-aligned arrays. 
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SciDB vs. Spark: Computing Environments 
 

  2 clusters: 
  Main Cluster: 28 nodes 
  Test Cluster: 3 nodes 

  Node Specification: 
  Virtual Node, with both SciDB and Spark installed 
  Each on a separate physical container 

  CentOS 6.5. 
  8 cores 

  32GB RAM 

SciDB Configuration: 
SciDB 15.7 

  2 instances per virtual node 

  Spark Configuration:  
  Cloudera 5.1, Spark 1.4.1, HDFS datastore 
  8gb executors ~ 2 executors per node 
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SciDB vs. Spark: Running Times 

  28-node Main Cluster   3-node Test cluster 
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Spark+HDFS Overhead 

 No user control over data placement in 
HDFS, since it handles placement 
automatically. 
 MERRA MAT1NX and NMQ arrays must be 
combined into one array to guarantee 
placement alignment between them. 
  The overhead for this operation in Spark
+HDFS is >50% (~3 hours on the main cluster). 
  This may be acceptable for 2 data arrays, it 
will become impossible as the number of 
datasets/arrays increases! 
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THANK YOU! 
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Business Model 
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High-Performance Computing and Data-
Intensive Computing 

 High-Performance Computing (HPC) 
 Computation-bound applications, e.g. model 
simulation. 
 Centralized high-performance (and expensive) 
file systems. 

 Data-Intensive Computing 
Input/Output (I/O)-bound applications, e.g. data 
production and data analysis. 

 Data production – e.g. producing L1, L2, L3, and/or L4 
datasets for a mission. 
 Data analysis – e.g. analyzing data products and 
datasets. 

 Distributed commodity compute/storage (and 
low-cost) resources. 
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 Centralization on a distributed, robust, and 
fault-tolerant system. 
  Sophistication in access control. 
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