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OceanXtremes: Oceanographic Data-Intensive Anomaly Detection and 
Analysis Portal

Objective 

Key Milestones Approach 

Develop an anomaly detection system which identifies items, events or 
observations which do not conform to an expected pattern 
•  Mature and test domain-specific, multi-scale anomaly and feature 

detection algorithms. 
•  Identify unexpected correlations between key measured variables. 
Demonstrate value of technologies in this service: 
•  Adapted Map-Reduce data mining. 
•  Algorithm profiling service. 
•  Shared discovery and exploration search tools. 
•  Automatic notification of events of interest. 

•  Setup on-premise Cloud environment. 
•  Select dataset and algorithm for anomaly detection. 
•  Design and develop OceanXtremes backend. 
•  Validate OceanXtremes using selected datasets and algorithms. 
•  Design, develop and integrate web portal to backend system. 
•  Integrate datacasting and visualization capability. 
•  Expand the number of datasets and algorithms supported within 

OceanXtremes 
•  Conduct end-to-end demonstration. 

Co-Is: E. Armstrong, G. Chang, T. Chin, B. Wilson, JPL TRLin = 2         TRLcurrent = 3 
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Illustration of future OceanXtremes 
analysis capability showing sea 
surface temperature (SST) gradients 
from AVHRR imagery (warner colors 
indicate higher gradient persistence) 

•  Complete backend system design 12/15 
•  Complete testing of backend system 05/16 
•  Complete web portal design 08/16 
•  Integrate web portal and backend system 11/16 
•  Integrate datacasting and visualization capability 02/17 
•  Collect benchmarking data 04/17 
•  Conduct end-to-end demonstration 05/17 



Motivation

•  Anomaly detection is a process of 
identifying items, events or observations 
outside the “norm” or  expected patterns 

•  Current and future oceanographic 
missions and our research communities 
present us with challenges to rapidly 
identify features and anomalies in 
increasingly complex and voluminous 
observations 

•  Typically this is a two-stage procedure 
1.  Determine a long-term/periodic mean 

(“climatology”) 
2.  Deviations from the mean are 

searched.  Step 1 could be omitted in 
cases where a climatology data set 
already exists. 
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OceanXtremes Architecture

Xtremes Ingester 
Real-time ingestion system 

Xtremes Climatology 
Batch-oriented climatology 
computation service 

Xtremes Processor 
Horizontal-scale system for 
anomaly computation and 
detection 

Xtremes Analyzer 
Webservice to access data 
and anomalies 

Xtremes Visualizer 
Web service for data 
visualization 

Xtremes Speaker 
Feed generation and 
management system 

Xtremes Explorer 
Web-based data visualization 
and analysis 
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Deep Data Computing Environment (DDCE) 

DDCE	is	OceanXtremes’	development	environment.		It	
consists	of	
•  CloudWork:	A	Miran6s	OpenStack	private	cloud	

compu6ng	environment	
•  DeepData:	A	high-performance	data	cluster	with	

locally	aCached	storages	
•  High	speed	switches	

NEXUS: The Deep Data Platform
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NEXUS Deep Data Analytics: One-Minute Summary

NEXUS is an emerging technology developed at JPL 
•  A Cloud-based/Cluster-based data platform that performs scalable handling of observational parameters analysis designed 

to scale horizontally by 
•  Leveraging high-performance indexed, temporal, and geospatial search solution 
•  Breaks data products into small chunks and stores them in a Cloud-based data store 

Data Volumes Exploding 
•  NISAR & SWOT missions coming 
•  File I/O is slow 

Scalable Store & Compute is Available 
•  NoSQL cluster databases 
•  Parallel compute, in-memory map-reduce 
•  Bring Compute to Highly-Accessible Data 

Pre-Chunk and Summarize Key Variables 
•  Easy statistics instantly (milliseconds) 
•  Harder statistics on-demand (in seconds) 
•  Visualize original data (layers) on a map quickly 

A growing collection of data analytic microservices 
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Analytics & Summarization of Stack

AIST-14:	OceanXtremes	THUANG/JPL 

30-Year Time Series of archival HDF & netCDF files (daily or per orbit)

Fast &
Scalable

Display Variables on Map Latitude-Time Hovmoller Plot Aggregate Statistics

Cassandra DB Cluster & 
Spark In-Memory
Parallel Compute!

Chunk Chunk Chunk

Chunk Chunk Chunk

Chunk Chunk Chunk

…

SMAP MODIS GRHSST JASON

Meta
Data

Meta
Data

Meta
Data

Meta
Data …

Solr DB Cluster

Metadata (JSON): Dataset and granule metadata, 
Spatial Bounding Box & Summary Statistics

Subset Variables & 
Chunk Spatially

Slow File I/O

Each file contains many high-resolution geolocated arrays

Custom
Analytics



Enable Ocean Science

"The Blob is a result of a high pressure system that has parked itself in the Gulf of Alaska for the past few years that has driven the polar jet 
stream north into northern Canada and then it plunged rapidly out of northern Canada into the American Midwest and northeast. And so the 
result was hot dry winters on the west coast, and fierce winters with heavy snow pack in the Midwest.” – Bill Patzert, NASA/JPL 
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Xtremes Explorer
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High	Resolu6on	Data	Visualiza6on	for	the	Web	

Data	Analysis	Workbench	



Daily Anomalies
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Aug	02,	2012	 Aug	02,	2013	

Aug	02,	2014	 Aug	02,	2015	



The Notebook

•  /capabilities: list of capabilities 
•  /chunks: list data chunks by location, time, and datasets 
•  /correlationMap: Correlation Map 
•  /datainbounds: Matchup operation to fetch values from 

dataset within geographic bounds 
•  /datapoint: Matchup operation to fetch value at lat/lon 

point 
•  /dailydifferenceaverage:  Daily difference average  
•  /latitudeTimeHofMoeller: Latitude Time Hovmoeller 
•  /list: list available datasets 
•  /longitudeLatitudeMap: Longitude Latitude Map 
•  /longitudeTimeHofMoeller: Longitude Time 

Hovmoeller 
•  /stats: Statistics (standard deviation, count, min/max, 

time, mean) 
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Interact with OceanXtremes using Jupyter Notebook 



Data Tiling Scheme

•  Pre-processing occur during ETL phase 
•  Breaking geospatial arrays into small geo-addressable data chunks (or partitions) 
•  Tile → small → in memory processing 
•  All spatial indexes are managed by Apache Solr 
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→	

Tiling	Algorithm	 MUR	Data	in	0.01	degrees,	Tiles	2.5°	x	5°	



Real-time Ingestion Solution

A  real-time data ingestion system 
1.  Data discovery 
2.  Metadata extraction 
3.  Data partition (tiles) 
4.  Pre-compute metrics 
5.  Register to NEXUS 

Core components 
•  Admin 
•  Containers 
•  High-performance message broker 
•  Distributed synchronization service 

Deployed under OpenStack Cloud 

18 virtual instances 
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Investigated Parallel Performance

Four technologies: 
 
 
 
 
 
 
 
Multiple runs over different numbers of tiles 

•  Query for tiles that intersect a user-chosen lat/lon rectangle and time range 
•  Multiple rectangles:  1, 5, 10, 30, and 90 degree lat/lon boxes 

 
Vary number of partitions to keep cores busy (> 2-3X) 

•  32, 64, 128, 256  (128 best, 256 saturates) 
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Mul6core	on	single	node	 8	core	=	8-way	parallelism	

PySpark	on	YARN	scheduler	 8	nodes	x	4	cores	on	each	
32-way	parallelism	PySpark	on	Mesos	scheduler	

DPark	on	Mesos	(fastest)	



Performance Benchmark

DPark on Mesos is fastest and scales with # of tiles 
•  Mesos vs. YARN:  shorter startup time, faster task 

scheduling 
•  DPark:  no data movement between python runtime 

and JVM 
•  As # of tiles grows, 7 nodes x 4 cores all kept busy. 
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Environment 1x1 5x5 10x10 30x30 90x90 

Spark	on	YARN 7.562 36.663 106.101 118.678 121.306 

DPark	on	Mesos 5.638 29.353 96.799 103.839 107.826 

Spark on YARN DPark on Mesos



Climatology Algorithm: Gaussian Interpolation
•  Armstrong, E. and J. Vaquez-Cuervo, A New Global Satellite-Based Sea Surface 

Temperature Climatology, Geophysical Research Letters Volume 28, No. 22, Pages 
4199-4202, November 15, 2001 

•  A time/space Gaussian interpolation to generate global sea surface temperature 
climatology 

•  The Fortran-based implemented was ported to execute on the Deep Data Computing 
Cluster 

•  Python wrapper is being implemented to simplify integration into Xtremes Climatology 

•  Allow users to rapidly create regional and custom period climatologies for SST, wind etc. 

THUANG/JPL 

GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 22, PAGES 4199-4202, NOVEMBER 15, 2001

A New Global Satellite-Based Sea Surface
Temperature Climatology

Edward M. Armstrong and Jorge Vazquez-Cuervo
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract. A new approach to the generation of a global sea
surface temperature (SST) climatology from satellite data is
presented. This work is an extension of Casey and Cornil-
lon [1999] who demonstrated the overall superiority of con-
structing a global climatology using exclusively advanced
very high resolution radiometer (AVHRR) Pathfinder satel-
lite SST data vs. blended in situ/satellite data. In this im-
plementation, a global pentad (five day) climatology was de-
rived from daily 9 km AVHRR Pathfinder SST data through
Gaussian interpolation and averaging. Performance of this
climatology with respect to the Casey 9 km pentad satellite
and Reynolds 1◦ monthly climatologies was then investi-
gated by examining the standard deviation of the anomaly
data set constructed by subtracting climatological SST ob-
servations from co-located long-term in situ SST observa-
tions. In all areas examined this new climatology, hereafter
referred to as the JPL pentad climatology, demonstrated
modest improvements over the other climatologies.

Introduction

The need for accurate SST climatology is well-known and
important to programs such as the Intergovernmental Panel
on Climate Change (IPCC) whose investigations attempt to
identify and predict anthropogenic-induced global warming
from observed and computer modeled data. Recently, Casey
and Cornillon [1999] created an entirely satellite-based cli-
matology that typically “outperformed” the Reynolds 1◦,
Global Sea-Ice and SST (GISST) 1◦, 1994 World Ocean At-
las (WOA94) 1◦ and GOSTA 5◦ SST climatologies that are
derived from blended in situ/satellite or in situ only data.
The performance evaluation methods used long-term in situ
observations from the 1994 World Ocean Atlas (WOA94)
and Comprehensive Ocean- Atmosphere Data Set (COADS)
to construct temperature anomaly data sets formed by sub-
tracting the climatological SST from co-located in situ SST
(either WOA94 or COADS). A performance criterion was
then based on the standard deviations of the anomaly tem-
perature data sets, with the lowest standard deviation (σ)
indicating the climatology best able to represent SST vari-
ability and therefore most suitable for detecting global tem-
perature trends and reducing climatic noise. The Casey cli-
matology was generated from daily 9 km Pathfinder AVHRR
daytime and nighttime imagery from 1985-1997 (13 year
baseline) through a pixel-by-pixel averaging approach of the
entire time series after applying a “cloud erosion” filter.
In this study, a different approach to the nearly iden-

tical Pathfinder AVHRR data set used to derive the Casey

Copyright 2001 by the American Geophysical Union.

Paper number 2001GL013316.
0094-8276/01/2001GL013316$05.00

climatology was taken (some of the Pathfinder v4.0 and
v4.1 interim algorithm data used in the Casey climatology
have been reprocessed with the v4.1 algorithm). No cloud
erosion filtering was performed and daily files were Gaus-
sian interpolated/averaged to climatological pentad periods.
The climatology generated was tested against the Casey and
Reynolds climatologies both globally, by 10◦ latitude bands,
and for smaller high variability regions using the criterion
of the minimization of anomaly SST standard deviation.

Methods and Data

The JPL pentad climatology was derived from 9 km
Pathfinder SST satellite data [Kilpatrick et al., 2001] from
1985-1999 using only high quality (“best pixel”) SST. These
data are equivalent to Pathfinder “all pixel” data with cloud
flag values of 4 or higher (cloud flags range from 0-7). For
each year, Gaussian interpolation was applied to spatially
and temporally interpolate daily day and night data into
separate pentads on a 9 km grid. The Gaussian function
was of the form:

e(−0.6931∗(((x−xo)/xh)
2+((y−yo)/yh)

2+((t−to)/th)
2)) (1)

Here x and y refer to spatial points (degrees longitude
and latitude, respectively), while x◦ and y◦ represent the
spatial grid centers to interpolate to. t refers to the tempo-
ral period (day) and t◦ refers to the pentad to interpolate
to. The xh, yh, and th parameters are the e-folding scales of
the Gaussian function (i.e., the “half width” of the distribu-
tion). The spatial values, xh and yh, were taken as 1/e of
the autocorrelation distributions determined from analyses
of the high variability Gulf Stream and eastern equatorial
Pacific regions (not shown). In both regions this was about
two 9 km pixels or about 0.17◦ (at the equator) with the
final value chosen to be 0.15◦. The temporal scale, th, was
conservatively chosen to be 1 day.
The final step averaged the individual yearly interpolated

day/night pentads into the climatological pentads (e.g., all
thirty pentad 70 maps from 1985-1999 were averaged to cre-
ate climatological pentad 70). A noteworthy difference be-
tween the Casey and JPL climatologies was with regard to
clouds. For the Casey climatology, a “cloud erosion” filter
was applied to the Pathfinder images that cloud flagged SST
values in the immediate (one pixel) vicinity of Pathfinder de-
tected clouds (in “best pixel” imagery). However, we believe
the Pathfinder cloud flagging in the “best pixel” imagery is
already conservative since each pixel must pass a strict hier-
archy of cloud contamination criteria including the stringent
cloud test that is arranged as a decision tree of various tests
and is unique for each AVHRR satellite [Kilpatrick et al.,
2001]. The JPL climatology was also created with two sep-

4199
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Algorithm: Empirical Orthogonal Function (EOF)

•  EOF analysis is widely used in meteorology and 
oceanography to extract dominant modes of behavior in 
scalar and vector datasets 

•  EOF is computationally demanding, especially for large high 
resolution data sets, e.g. MUR SST. 

•  Typical workstations don’t have the capacity to handle “high 
resolution” and long time series datasets available at 
PO.DAAC 

•  Key algorithmic and implementation issue - parallelized/
distributed computation of the Singular Value 
Decomposition (SVD). 

•  For efficient SVD computation, we have experimented with 
a Lanczos algorithm that allows computation of only the 
most dominant eigen/singular values/vectors.   

•  Codes from an externally maintained package, the ARnolidi 
PACKage (ARPACK), have been used in prototyping works.  
These codes/algorithms still need to be realized in an 
efficient way for our “tiled” data structure. 
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Using a Lanczos Eigensolver in the Computation of Empirical
Orthogonal Functions

VINCENT TOUMAZOU AND JEAN-FRANCOIS CRETAUX
CNES/LEGOS-GRGS, Toulouse, France

(Manuscript received 28 February 2000, in final form 11 September 2000)

ABSTRACT

In the framework of physical field studies, EOF analysis allows the scientist to determine the modes that
govern the variability of a phenomenon. The analysis requires the resolution of a linear algebra problem. This
paper focuses on this part of the EOF analysis, the computation of some singular values, and the associated
vectors of the data matrix D. After recalling some fundamentals of this type of problem, the authors compare
the usually employed singular value decomposition strategy with a Lanczos eigensolver technique. The latter
consists of computing some eigenvalues of a small symmetric matrix. The authors demonstrate its mathematical
and numerical stability and discuss its main features. A comparison of the two strategies shows the advantages
of the Lanczos technique. Finally, the approach is illustrated with an example based on the study of oceanographic
datasets.

1. Introduction

When studying physical fields, it can be interesting
to highlight the dominant modes of the spatial and/or
temporal variability of the phenomenon. Let us consider
a field d(f, l, t), for example, sea surface height or
temperature, measured at m points of latitude f and
longitude l at times t 5 t1, . . . , tn. In order to analyze
the variability of this field, one can perform an analysis
based on empirical orthogonal functions (EOF). This
consists of writing d(f, l, t) as a sum of modes centered
at each time-averaged point:

n

d(f, l, t) 5 d(f, l) 1 m (f, l)e (t), (1)O j j
j51

where d(f, l) denotes the time average of d at point
(f, l).
The jth mode is represented by its temporal component

ej(t) and its spatial component mj(f, l). Its contribution
to the variability of the phenomenon under study is given
as a percentage of the total variance. It can be computed
as the ratio of the variance of the mode over the total
variance, that is, the sum of the variances of the nmodes.
In the general framework of this kind of analysis, the
scientists are mainly interested in the dominant modes,

Corresponding author address: Vincent Toumazou, CNES/LE-
GOS-GRGS, 18, Avenue Edouard Belin, 31401 Toulouse Cedex 4,
France.
E-mail: Vincent.Toumazou@cnes.fr

the few modes with the highest percentage of variance.
In this case, Eq. (1) can be rewritten as

d(f, l, t) 2 d(f, l)
k n

5 m (f, l)e (t) 1 m (f, l)e (t), (2)O Oj j j j
j51 j5k11

and the goal of the analysis is to determine the first term
on the right-hand side that contains the k first modes of
interest. Actually, Eqs. (1) and (2) can be reformulated
as a linear algebra problem. Let us write the time-vary-
ing data as a matrix D ∈ Rm3n where each row (column)
is associated with one point (f, l) (with one epoch t).1
Equation (1) becomes

D 5 USVT, (3)

which is the singular value decomposition of D (see
section 2b) and Eq. (2) becomes

D 5 UkSk 1 Un2kSn2k .T TV Vk n2k (4)

The component mj(f, l) [ej(t)] is derived from the jth
column of U (VT) while the jth diagonal element of S
is used for the computation of mj or ej depending on
the normalization involved (see section 4).
A code that performs an EOF analysis should be com-

posed of three main steps.

R Step 1: Preprocessing of the data

1 In this framework, if (f, l ) is associated with the ith row and t
with the jth column, Dij 5 d(f, l, t) 2 d(f, l ).



Data Sources
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Phenomenon Dataset Key Variables Time Range Data Mining Operators Needed 

El Nino genesis, anomaly 
detection and 
characterization in different 
regions (3.4 vs 4). Coastal 
upwelling 

CCMP L4 Wind 1987-2015 Anomaly calculation from fixed or on-the-
climatology, Threshold detection. Variance 
characterization 

Integrated Altimeter L4 SSH 1992-2013 

MODIS Aqua/Terra L3 SST 2000-present 

AVHRR_OI L4 SST 1982-present 

MUR L4 SST 2002-present 

El Nino and other 
teleconnections. Regional 
correlations 

CCMP L4 Wind 1987-2015 Cross correlations. Covariabilty and EOFs. 
 Integrated Altimeter L4 SSH 1992-2013 

MODIS Aqua/Terra L3 SST 2000-present 

AVHRR_OI L4 SST 1982-present 

MUR L4 SST 2002-present 

Aquarius L3 Salinity 2011-present 

MODIS Aqua L3 Chl A 2002-present 



Data Sources
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Phenomenon Dataset Key Variables Time Range Data Mining Operators Needed 

Upwelling. Hurricane genesis CCMP L4 Wind 1987-2015 Divergence and curl. 
 MODIS Aqua/Terra L3 SST 2000-present 

AVHRR_OI L4 SST 1982-present 

MUR L4 SST 2002-present 

Gradients, edges, and eddy 
detection 

MODIS Aqua/Terra L3 SST 2000-present Matched filter (e.g., Sobel operator). First 
derivatives. 
 

MUR L4 SST 2002-present 

MODIS Aqua L3 Chl A 2002-present 

Trends. Basin scale variability CCMP L4 Wind 1987-2015 Regression, Polynomial fits. Variance. 

Integrated Altimeter L4 SSH 1993-2013 

MUR L4 SST 2002-present 



Engagements

April 2015: PO.DAAC User Working Group 

June 2015/2016: Earth Science Technology Forum 

July 2015: ESIP Federation Summer Meeting 

October 2015: IEEE Big Data Conference 

December 2015: American Geophysical Union Fall Meeting 

January 2016: ESIP Federation Winter Meeting 

February 2016: Ocean Sciences Meeting 

March 2016: Ground System Architectures Workshop 

March 2016: PO.DAAC User Working Group 

July 2016: ESIP Federation Summer Meeting 

October 2016: International Conference on Marine Data and 
Information Systems – Gdanski, Poland 
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Near-term Plan

Data Services 
•  Xtremes Ingester 

•  Improve tiling performance and additional tile-level stats 
•  Xtremes Processors 

•  MapReduce framework 
•  Automatic detection workflow 

•  Xtremes Analyzer: Search and metadata capabilities 
•  Xtremes Speaker: Datacasting feed management 
•  Docker deployment process 

Science and Algorithms 
•  Catalog know anomalies (e.g. El Nino, hurricane, etc) 
•  Empirical Orthogonal Function (EOF) 

Web Portal 
•  More visualizations 
•  Anomaly search 
•  User-defined anomaly detection 

Datasets 
•  MODIS Terra L3 – SST and Chl A 
•  CCMP L4 - Wind 
•  Integrated Altimeter L4 - SSH 
•  Aquarius L3 - Salinity 
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Near Term Plan  
Spark and Resource Management

Issue: From our benchmark comparison, we have concluded the common Spark + YARN combination, while it is faster 
than Hadoop, the bridge to PySpark with YARN don’t yield the desired performance. 

 
PySpark is a python wrapper on Spark, which is implemented in Scala (Java).  Data is being copied between Java 
memory space to Python memory space.  Python, because of numpy and scipy, is still the leading programming 
language for scientific programing 
 
YARN got popular with Hadoop in the Cloudera distribution.  It works well with Hadoop, but we discovered the 
scheduling overhead with YARN is less than desirable. 
 
DPark is pure python implementation of Spark.  Our benchmarking shows DPark + Mesos out performs PySpark + 
YARN by ~30%. 
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Near Term Plan  
High-throughput Distributed Processing

Issue: Result retrieval from Solr could create huge performance bottleneck.  What happen when a temporal-spatial 
query returns 1M matches.  Current implementation fetches all 1M matches before start processing. 

 
A new high-throughput distributed processing framework is developed to farm jobs for each Solr page fetch.  It frees 
the system from high memory utilization and also increase parallelism, which yields faster response. 
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Questions? 
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