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Motivation

I Climate models are deterministic, mathematical descriptions of the physics
of climate.

I Confidence in predictions of future climate is increased if the physics are
verifiably correct.

I A necessary (but not sufficient) condition is that past and present climate
be simulated well.

I How do we judge this?
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Motivation

Two panels of Figure 8.21 from Chapter 8, Third Assessment Report of IPCC Working Group 1 (2007).

Comparison of eigenvectors for the leading EOFs of the SSTs between the ENSO time-scale (<12

years) (a) observation, and (b) the MRI coupled climate model, respectively (Yukimoto, 1999).

Numbers in bracket at the upper left show explained variance in each mode.

Are these “the same"?
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Motivation
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CCSM4 and HadCRUT4, 1861−2005
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Monthly global average surface temperature anomaly (vs 1961-1990 mean) for CCSM4 (Gent et al.,

2011) and HadCRUT4 (Monice et al., 2012 in red).
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Motivation

I How similar do the fields or time series have to be to call them “the same"?

I Depends on the inherent variability of the statistic used to measure
similarity.

I Hypothesis testing framework:
I H0: modelled and observed come from the same population.
I Test H0 using the modeled and observed fields or time sequences.
I Reject H0 −→ not the same.
I Do not reject H0 −→ the same?
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Hypothesis testing framework

Example: Is the temperature at 12:00 noon in the month of July the same at JPL
as it is in Pasadena?

X ∼ N(µ1, σ
2), Y ∼ N(µ2, σ

2), H0 : µ1 = µ2 vs. HA : µ1 6= µ2.
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Hypothesis testing framework

X ∼ N(µ1, σ
2), Y ∼ N(µ2, σ

2), H0 : µ1 = µ2 vs. HA : µ1 6= µ2.

1. Collect data: X1,X2, . . . ,XN from population 1, Y1,Y2, . . . ,YM from
population 2.

2. Choose test statistic: T = (X̄ − Ȳ ).

3. Obtain distribution of test statistic under assumption of the H0, pdf (T ; H0).

4. Locate T in the distribution pdf (T ; H0) and determine how extreme T is.

If T is “extreme" then we reject H0 because T is “inconsistent" with it.

8



Hypothesis testing framework

Traditionally, reject H0 if P(T ≥ τ) < α, α = .05 (say).
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Hypothesis testing framework

Remarks:

I To respect uncertainty, it is useful to model data with probability
distributions even if they are produced by deterministic mechanisms.

I Choice of the test statistic is up to us.

I Choice of how we obtain pdf (T ; H0) is up to us (analytically, via simulation,
etc.)

I P(T ≥ τ) is called the p-value of the test. It is a scaled “distance" between
τ and the expected value of T under the assumption that the null
hypothesis is true.

I Threshold α is called the significance level of the test, and it is our choice.
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Application to CCSM4 vs HadCRUT4

For CCSM4 vs. HadCRUT4 monthly surface temperature anomalies (relative to
the mean 1960–1991)

1. Collect data: 1739 monthly values (1861–2005) for CCSM4 (X) and
HadCRUT4 (Y).

2. Choose test statistic:
I regress “climate-scale" wavelet coefficients* of X on those of Y,

I obtain slope, β1, and intercept, β0,

I test statistic is T = [(β1, β0)− (1, 0)] K−1 [(β1, β0)− (1, 0)]′.

I K is an estimate of the covariance matrix of (β1, β0).

* Climate-scale defined as coarsest six (of 11 total) wavelet coefficient levels.
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Test statistic
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The null distribution of the test statistic

3. Obtain distribution of T under assumption H0 is true (pdf (T ; H0)):

I we use a resampling method called the Wild Scale-Enhanced
Bootstrap (WiSEBoot)

I create 1000 resampled time series pairs (X∗,Y∗) with common
(HadCRUT4) climate-scale coefficients and perturbed “noise".

I T ∗i = [(β∗i1, β
∗
i0)− (1, 0)] K−1 [(β∗i1, β

∗
i0)− (1, 0)]′ , i = 1, 2, . . . , 1000.

I K is the empirical covariance matrix of (β∗i1, β
∗
i0) , i = 1, 2, . . . , 1000.

I Histogram of {T ∗i } , i = 1, 2, . . . , 1000 is an approximation of
pdf (T ; H0).
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The null distribution of the test statistic

One resampled pair of HadCRUT4 (green) and CCSM4 (blue) time series.

Thick lines are climate-scale reconstructions, and thin lines are full
reconstructions.
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The null distribution of the test statistic

(β∗
i1, β

∗
i0) , i = 1, 2, . . . , 1000 Histogram of {T∗

i } , i = 1, 2, . . . , 1000

and actual value of T for CCSM4 and

HadCRUT4 (red line).
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Hypothesis test result

4. Locate T in the distribution pdf (T ; H0) and determine how extreme T is.

I P(T ∗ ≥ T ) = .199.

I We do not reject the null
hypothesis that the two series
share the same climate signal
at α = .05.
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Conclusion

If CCSM4 and HadCRUT4 really did share the same climate signal (as we have
defined it), then we would obtain values of the test statistic T as larger or larger
than that computed from the original CCSM4 and HadCRUT4 time series with
probability p = 0.199.

Moreover, p determined in this way is a quantitative measure of the compatibility
of the data (CCSM4 and HadCRUT4 time series) with the null hypothesis.
CMIP5 models can be compared using this measure.

See Braverman, A., Chatterjee, S., Heyman, M., and Cressie, N.C. (2016) for
details.
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