Tornado (25 m grid spacing)
Prof. Ming Xue at U. Oklahoma

Hurricane Katrina (2005)
1.67 km grid spacing
18 second loop
Tao et al. (2011)
Ames

Microphysics
Resolution
Initial Condition
Empowering Data Management, Diagnosis, and Visualization of *Cloud-Resolving Models* (CRM) by Cloud Library upon Spark and Hadoop

Wei-Kuo TAO (PI, GSFC)
Xian-He Sun (Co-PI, IIT)
Shujia Zhou (Co-PI, Northrop Grumman)
Toshihisa Matsui (Co-PI, ESSIC UMD)
Xiaowen Li (Co-I, GESTAR MSU)
Dan Duffy (Collaborator, GSFC)

Outlines →

Background/Goals/Approach
Modeling Systems
Pilot Cases
Results
Status
Goddard Cloud Library

Mesoscale Dynamic and Modeling: http://cloud.gsfc.nasa.gov/

Model descriptions, Group members, Publications & multi-dimensional (space, time, multivariate, and multiple cloud/cloud system type) cloud database (model simulated cloud data) is available from a web site created within NASA Goddard (Goddard Cloud Library).

Currently, more than 70,000 datasets were downloaded since April 2010 by 155 distinct users

Modeled + Observed Data in Mass Storage
No visualization nor diagnosis

Supported by NASA MAP
Goals

• Make Cloud Resolving Model output more usable by science community
 • Accelerate visualization of output.
 • Inter-compare large volumes of output from high-resolution simulations.
 • Diagnose key processes for cloud-precipitation.

• Demonstrate the value to distribute, visualize, analyze and inter-compare Cloud Resolving Model output and data with GCE and NU-WRF

GCE: Goddard Cumulus Ensemble
NU-WRF: NASA Unified Weather Research Forecast
Approach

• Develop Super Cloud Library (SCL) supporting Cloud Resolving Model using Spark on Hadoop.
 • Create cloud data files
 • Develop data model and Hadoop format transformer
 • Develop dynamic transfer tool to Hadoop
• Develop subset and visualization APIs (Application Programming Interfaces)
• Develop Web User Interface
• Conduct Demo of GCE and NU-WRF diagnosis on NAS and NCCS

February 15, 2015
Blue: Have preliminary results
NASA Cloud Resolving Models

- Multi-scale modeling system developed at Goddard with unified physics from:

 1. Goddard Cumulus Ensemble model (GCE), a cloud-resolving model (CRM)
 2. NASA unified Weather Research and Forecasting Model (WRF), a region-scale model, and
 3. Coupled fvGCM-GCE, the GCE coupled to a general circulation model (or GCM known as Goddard Multi-scale Modeling Framework or MMF).

- Same parameterization schemes all of the models for cloud microphysical processes, long- and short-wave radiative transfer, and land-surface processes, to study explicit cloud-radiation and cloud-surface interactive processes.

- Coupled with multi-sensor simulators for comparison and validation of NASA high-resolution satellite data.

LIS: Land Information System (data assimilation and land surface models)
GOCART: Goddard Chemistry Aerosol Radiation and Transport Model

Water and energy cycles in the tropical climate system,

Redistribution of ozone and trace,

Deep convection related to global warming,

Precipitation processes - precipitation efficiency,

The aerosol impact on precipitation and rainfall,

Surface process on precipitation and rainfall,

Representation of cloud microphysical processes and their interaction with radiative forcing

TRMM and GPM rainfall and latent heating retrieve algorithm performance

GCE Model Description: Tao and Simpson (1993), Tao et al. (2003), Tao (2003), Tao et al. (2014)
CRM review paper: Tao and Moncrieff (1999 – Geophy Review)
Aerosol review paper: Tao et al. (2012 – Geophy Rev)

Supported by NASA TRMM/GPM and MAP
Real time forecast to support GPM ground validation field campaigns

Precipitation processes study to support satellite missions (GPM and CaPPM)

Cloud-aerosol-precipitation interaction (direct and indirect)

Regional climate (downscaling from climate models)

Dust effect

Land surface effect on precipitation

Hydrological study (flood, draught)

Supported by NASA MAP
NU-WRF : IPHEX
(May 1 – June 15, 2014)
9km(386x353), 3km(601x553), 1km(751x667)
Computational Cost: 2048 CPUs, takes 7 hours to produce 48 hours forecast.

Long-Term: AMMA case (Phase I &III):
Phase I Jan & Feb (Dry season: aerosol dominate)
Phase III July-Aug (Peak Monsoon: MCS).
Short-Term: 1-0.5 km Nature run:
April 27–30, 2014 tornado outbreak

GIGA GCE-LES
4096x4096x104, 250 m, 2-3 day simulation:
Total output data size ~125TB
Model Inter-comparison

DYNAMO
MJO
Nov 10 – Dec 14
Super Cloud Library (SCL)

Hadoop Distribution File System (HDFS)

Web Interface

Diagnosis

Query

Animation

MapReduce

Spark

Acceleration

YARN

Interface

Result

PFS-to-Hadoop Data transform

GCE, NU-WRF simulation

Dynamic Library

Command

Conduct simulation

Modelers, CRM Data users

Command

Analyze

Download

NCCD Data Portal – Super Cloud Library
Illustration of super cloud library from the viewpoint of applications

NCCS just installed Spark on June 22, 2015.

Hadoop Distributed File System (HDFS), Yet Another Resource Negotiator (YARN)
Spark uses memory for acceleration and YARN use resource management for acceleration

HIVE is a SQL-like language/tool for Hadoop. Impala is an optimized version of HIVE

Python/R is a script language/tool supported by Hadoop and Spark.
The difference between *pilot and proposed* case is the size of model simulation and data storage.

The pilot case allows us to develop and test *data model as well as all software* (e.g., Hadoop, PFS, IDL, R)

PFS: Parallel File System
R: A popular programming language and software environment for statistical computing and graphics
Data Sizes (pilot vs proposed cases)

• Pilot case
 GCE (250x250x40, month-long simulation): DYNAMO Nov. 2011 MJO event; Single output data size 3~6GB; Total output data size ~2TB.
 NU-WRF (1 km and 48 h simulation): IPHEX; 10 output variables. Hourly output in a text (CSV) format has 465GB

• 1KMSBM, 250x250x40, 5-day simulation: Single output data size ~60GB; Total output data size ~7.2TB.

• GIGALES, 4096x4096x104, 2-3 day simulation: Single output data size ~2.5TB; Total output data size ~125TB.
Data Model

• Read NU-WRF NetCDF output or GCE binary output, write it out in a text (CSV) format and provide a file with the relevant meta data (e.g., unit and time stamp) for reconstructing it into CF-NetCDF
 – CF-NetCDF is a NetCDF with CF compliance

• One variable, one time frame per file
 – One variable, multiple time frames per file

• A subset data file will be available in CF-NetCDF

CSV: Comma-separated value
CF: Climate and Forecast Metadata
Developed an animation/movie of 48 text files from NU-WRF Pilot simulations. Each file has ~1GB

14 minutes for IDL with Hadoop streaming
- NCCS Hadoop cluster has 34 nodes
- IDL is on one Hadoop node and can run with multiple instances simultaneously
- Files stored in Hadoop file system (HDFS)
- 15 seconds for reading each file out of HDFS

17 minutes for IDL with NCCS Discover GPFS file system
- IDL is on one NCCS Dali compute node
- Files stored in NCCS GPFS file system

GIF is one image format and animation is movie
GPFS is General Parallel File System
NU-WRF
Surface Rain Water
GCE 3D Cloud Structure
Examples of Diagnosis
(model inter-comparison)

Radar Reflectivity

Observed Reflectivity CFAD
May 20, 2011

Goddard 3ICE Graupel
gnss3 ICE CFAD (tot)

Morrison 3ICE Graupel
morrison CFAD (tot)

Goddard 4ICE
gnss4 ICE CFAD (tot)

Morrison 3ICE Hail
morrison CFAD (tot)

PDF – Rainfall Intensity

Composite dBZ

Hail

Composite dBZ
Dynamic Hadoop Reader System

- Hadoop with PVFS2 as well as CephFS parallel file systems

Job trackers and task trackers run on the master node, and task trackers and map tasks run on slave nodes. Virtual blocks are managed in the virtual block table in namenode. A task tracker initiates the PFS prefetcher thread to get data directly from a remote PFS. Map tasks initiate the PFS reader threads to import data directly from the remote PFS.
Testing Dynamic Hadoop Reader

- **Test system**
 - Parallel File System (PFS) can be CephFS and PVFS2
 - 1Gbit Ethernet connection
 - CephFS PFS and dynamic Hadoop reader are deployed on a 17 node cluster
 - PVFS2 FPS and dynamic Hadoop reader are deployed on a 48 node cluster

- **Test case**
 - Read and process with Word Count application
 - 48 text files, ~1GB each, at PVFS2
 - 8 PVFS2 I/O nodes, 8 Hadoop slave nodes
 - The block size at Hadoop is 64MB
 - 4 concurrent map tasks per node
 - Max parallelism is 32 (=4x8)

CephFS and PVFS2 are two different parallel file systems. CephFS version 0.80.7 and OrangeFS version 2.8.6 (commercial version of PVFS2) are used.
Dynamic Hadoop Reader Performance

- Total time (I/O + Computation) is 561 seconds (= 9.35 minutes)
- Average I/O duration per request (64 MB) is 2.08 seconds
- Typical computation time per task is 20~25 seconds
- Longer duration time in the earlier reading requests is due to burst I/O requests
- Overlapping computation with I/O improves efficiency
- The prototype of Dynamic Hadoop Reader is functional and being improved
Technology

Hi: High performance, **Med:** Medium performance; **Low:** Low performance

Expected: It is expected to be from high to med.

<table>
<thead>
<tr>
<th></th>
<th>IDL</th>
<th>R</th>
<th>HIVE</th>
<th>Revolution R</th>
<th>SparkR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to use</td>
<td>Hi</td>
<td>Med</td>
<td>Hi</td>
<td>Med</td>
<td>Expected</td>
</tr>
<tr>
<td>Big data visualization</td>
<td>Hi</td>
<td>No</td>
<td>No</td>
<td>Hi</td>
<td>Expected</td>
</tr>
<tr>
<td>Big data statistical calculation</td>
<td>Hi</td>
<td>No</td>
<td>Med</td>
<td>Med</td>
<td>Expected</td>
</tr>
<tr>
<td>Advanced big image analysis</td>
<td>Low</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Expected</td>
</tr>
<tr>
<td>Cost</td>
<td>$400 per node</td>
<td>Free</td>
<td>Free</td>
<td>$60000 per node</td>
<td>Free</td>
</tr>
</tbody>
</table>

Revolution R: an enhanced version of open source R

SparkR: an R package that provides a light-weight front end to use Apache Spark from R.
Status

- Developing a data model so that various CRM simulation outputs in NetCDF and binary, including NU-WRF and GCE models, can be accessed and processed by Hadoop

- Developing a NetCDF-to-CSV converter to support NU-WRF and GCE model outputs

- Developing a technique to visualize data at Hadoop with IDL and Hadoop streaming

- Developing a use case where CRM modeled data can be processed (e.g., subsetting) with HIVE queries interactively via HUE’s Web interface
 - Experimenting with Clouder Impala to speed up subsetting

- Prototyping a portable dynamic Hadoop reader to access data in a parallel file system, PVFS2 or CephFS
As the number of processes increases, the domain size decreases and the percentage of communication cost (halo update) increase. Consequently, scalability is not linear.

However, when the domain size is fixed, it is close to liner. For example, the run with 2048x2048x104 with 4096 processes takes the similar walk clock time to 4096x4096x104 with 1024 processes.

Without parallel IO, 1028x1028x46 with spectral bin microphysics run fails due to memory limitation of a single processor core.

Simulations were carried out in NASA NAS Pleiades.
Launched Feb 2014

GPM

Launched in 1997-2015

CloudSat

Launched 28 April 2006

CaPPM
An Integrated Approach to Atmospheric Water Cycle and Climate Change Research

Precipitation
Rain, snow, convective, stratiform, drizzle...

Clouds
H, M, L, convective, stratiform, mixed-phase, precipitating...

Circulation and dynamical processes
(synoptic to cloud scales)

H2O & microphysical processes

Latent heating & transport, scavenging processes

Aerosol
Anthropogenic and natural sources

Radiative climate feedback
direct and indirect effects

Weather and climate models are using explicit microphysics schemes developed by CRM for their higher resolution forecast/simulation

Lau and NASA CaPMM