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e Outline

* Motivation - Why measure Methane?
* GSFC CH, Measurements for Earth &
Planetary Science.
— Measurement Approach
— Technology and Challenges
— Results
— Plans for Airborne Campaign
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Why measure Methane?

Anthropogenic and natural forcing of the climate for the year 2000, relative to 1750

Global mean radiative forcing (Wm-2) Source: IPCC Report
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CH, 1s a strong greenhouse gas (~*23-25 higher radiative forcing than CO, on a per molecule basis).

Earth Science Decadal Survey (NRC 2007):

“Ideally, to close the carbon budget, methane should also be addressed, but the required
technology is not now obvious. If appropriate and cost-effective methane technology becomes
available, methane capability should be added.”
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A Year 1n the Life of CH,

January 2012
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Source: Finnish Meteorological Institute (Carbon Tracker Europe Project)
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@ Methane in the Arctic — “Arctic Time Bomb”

* Increasing concern about CH, in the Arctic: “Is a Sleeping Climate Giant
Stirring in the Arctic?”. Large amounts of organic carbon are stored as CH,
and CO, in the Arctic permafrost. Thawing Arctic permafrost soil, is a cause
for concern as a rapid, positive greenhouse gas/climate feedback. In addition,
large but uncertain amounts of CH, are sequestered as gas hydrates in
shallow oceans and permafrost soils, which are also subject to potential rapid

release.
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Home « The White House Blog

The White House Blog
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Source: White House Blog

*  From the White House Climate Action Plan — Strategy to Cut Methane Emissions (March 2014):

— “Reducing methane emissions is a powerful way to take action on climate
change, and putting methane to use can support local economies with a
source of clean energy that generates revenue, spurs investment, improves
safety, and leads to cleaner air. That is why in his Climate Action Plan,
President Obama directed the Administration to develop a comprehensive,

interagency strategy to cut methane emissions.”’
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@/ Astrobiology- Methane as a Biomarker

LIDAR can localize methane or other trace gas sources for a lander

Methane abundance [ppb]
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@/ GSFC CH, Lidar with Integrated Path
Differential Absorption Lidar (IPDA)
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@« GSFC CH, Lidar with Integrated Path
Differential Absorption Lidar (IPDA)
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GSFC CH, Lidar
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* Need : Laser transmitter technology

» 3-5 um for planetary

» 1.64-165 pum on Earth

» Optical Parametric Generation (OPG) is the best solution currently available
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@ CH, Laser Transmitter Components /13

Pump: a high power, single
frequency, narrow linewidth
fiber or solid state laser at
1064 nm

v, Residual
Pump-not used

OPO/OPA v; Idler-not used
v, (t) Signal (1651 nm)

Optical Parametric Oscillator (OPO) or ’ \/
Optical Parametric Amplifier (OPA).

A non-linear crystal that amplifies the
seed laser to the energy needed for
space (250-300 wJ) without degrading
the spectral characteristics

Seed: a low power, single
frequency diode laser at

1651 nm. Methane Line

Used OPO/OPAs to measure CH4 at near and mid IR, CO2, H20 and CO

ESTO 11
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@ CH4 Transmitter Technology - OPA

——> n,; Residual Pump
= n, ldler Methane Line

—1

-

) seed > A1 1]
n, (t) Signal I )
|
A n, (t)
OPA: Easy to align, easy to tune, power scaling
n, Pump hard to achieve while maintaining narrow
linewidth.

OPA samples the CH, line at several wavelengths
using a single, continuously tuned seed laser
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@ CH4 Transmitter Technology - OPO

- — OPO (Laser) Cavity
= n; Residual Pump

- .

. >n, Idler Methane Line
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<l — Il
Seed Lasers /\

(i) n,(i)

n, Pump

OPO: Complicated to align and tune; power scaling easier to
achieve while maintaining narrow linewidth.

OPO samples the CH, line at several discrete wavelengths using
multiple seed lasers.

All lasers must be locked.
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@/ Why 1s Linewidth important?
Demonstration with a CH, cell

* Result with simulated US standard atmosphere
— Red 1s the result with OPO
is close to the best with dual-stage OPA
- theoretical
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Power Scaling Approaches Tk

#1. OPA with smaller burst | #2. OPA with large pump | #3. OPO with large pump
Approach
pulses pulse pulse

Relatively easy (more
traditional)

Pump laser

Pump laser type

Seed laser
(1651nm)

Output linewidth

Parametric stage

Status

Difficult (due to SBS,
damage, pulse variation)

Fiber
(robust, higher efficiency)

Existing DFB is OK but
could use higher power

Should be OK (~*500MHz)

Single OPA stage possible
(simple)

*Achieved power & linewidth
requirement with external
solid state amplifier but need
to improve packaging and
pulse power variation

Relatively easy (more
traditional)

Free space

High seed power
required

Becomes wider without
sufficient seed power

Need for multiple OPA
stages

Put on hold due to lack
of good seed laser source

Free space

Existing DFB is OK

Narrowed by optical
feedback (<300 MHz)

Need for cavity locking &
step tuning (complicated)

*Tried with in-house injection
seeded laser

*Demonstrated 5 wavelength
oPO

*Achieved power & linewidth
requirement

€arth Science Technology Office
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e Pump Laser Options

A. Burst Mode B. “Single” (Mono) Pulse

Burst Pulse « A
~20 pulses A<>/\ ~2 ns pulses
85 ns separation

Total Energy ~ 580 pJ

~100 ps separation

GSFC or other laser
C. Hybrid

Existing Approach

Yb Fiber MOPA
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n, (t) Seed OPA/OPO n, Idler ! Amp stages Power Amp !
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I 1
ML Hﬂ : New (Hybrid) Approach |
~100 ps separation Methane Line ’,f’ :
v - Solid State :
T -~ Yb Fiber Amp Power Amp I
Burst Pulse A ——— i stage !
~20 pulses 4}\ [\ I’]1 Pump e i

1-3 ns pulses
85 ns separation
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Burst OPA with Hybrid Pump

Measured signal power: ~2.1W

“H Calculated: ~2.9W
1 Corresponds to ~290ul per burst
— Pump power
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5 i
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OPA and Open Path Setup

Far target$
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@ OPA Open-path measurement setup

Data acquisition system

(
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@ OPA open path result

* Trend agreed with Picarro
— A smaller peak was observed by Lidar

6.0FT T T T | | | T ;
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@ OPO

* Pros

— Seed 1s enhanced by the cavity (Compensates for the insufficient
seed power)

e Cons

— Cavity length control 1s required.
— Continuous tuning 1s difficult.

8H [ I [ I [ [ I [ I [ H 1600 .
. | | | | 1 200 Measured signal energy: ~250ul
1 1 1 1 M Calculated ~350ulJ
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© § | | § 1 8 —@— Power after OPO cavity
o | X TS N —
<>: N * 400 E Signal power
1 o0 — | ™ Measured after 2 DMs
‘ Estimated from depleted pump power
0 T L+ 11 Ho

4 6 8 10 12 14 16 18 20 22 24 26 28

Gain module 2 pump current [A]
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Setup for S-wavelength OPO

DET
Sig.

Data acquisition system Reflective target

CH,

Computer  Boxcar averagers CH4 cell s
(Vacuum tank) DET A— —
=
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@/ Open path result with 5 wavelength OPO

24F — T — — R R —

1 ; 150313
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Trend agreed with Picarro
Lidar showed smaller peak than in-situ
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2015 Airborne Demonstration i

Flight Test Methane LIDAR Instruments:
« GSFC Methane Sounder
 GSFC Picarro

Conduct several test flights from
NASA’s Armstrong Science Aircraft
Integration Facility (SAIF) in Palmdale,
CA:

« 1 Engineering flight
« 2-3 science flights
« Approximately 12-15 hours of flight
time in mostly in CA
Assess CH, LIDAR measurements over
Western US

Evaluate derivation of XCH, from LIDAR
observations and compare with in-situ
and calibrations sites whenever
possible.

Evaluate OPA and OPO performance

»
—
€arth Science Technology Office
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DRS Technologies e-ADP

TA N

» First 4x4 HgCdTe
e-APD array for the
CO2 lidar received in
April 2013 and met
requirements

F/1.5 Dewar Cold Shield
with Cold Filter

FPA on chip carrier

G570

Developed under ESTO IIP Xiaoli Sun — Jim Abshire (PI)

A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications , Proc. SPIE 8739, Sensors and Systems for Space Applications VI,

87390V (May 21, 2013); doi:10.1117/12.2018083
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e Summary

v Many different approaches and options for power
scaling investigated

v’ Leveraged IRAD & ACT programs.

v Demonstrated two viable architectures for a CH,
transmitter using OPA and multi-wavelength OPO

v Demonstrated power scaling to 250-290 pJ.

v Demonstrated and validated CH, open path
measurements using the two lidar transmatters.

v' Airborne demonstration in September

v" Other laser transmitter options being investigated

* We would like to thank ESTO and GSFC IRAD
for their support

G570
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Why multiple wavelengths?

Bias or systematic errors
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Airborne Demo 2011
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‘Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path
differential absorption lidar”, APPLIED OPTICS / Vol. 51, No. 34 / 1 December 2012
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Local time (EDT)
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