A LINEAR MODE PHOTON-COUNTING (LMPC) DETECTOR ARRAY IN A CUBESAT TO ENABLE EARTH SCIENCE LIDAR MEASUREMENTS

Renny Fields¹, Xiaoli Sun², James B. Abshire², Jeff Beck³, Richard M. Rawlings³, William Sullivan III³, David Hinkley¹

¹The Aerospace Corporation, El Segundo, CA 90245
²NASA Goddard Space Flight Center, Greenbelt, MD 20771
³DRS Technologies, C4ISR Group, Dallas, TX 78712

Effort funded under the NASA Earth Science Technology Office InVEST 12 open solicitation
HgCdTe electron initiated avalanche photodiode (e-APD) array

- Developed by DRS Technologies in Dallas TX
- 2x8 pixels with built-in read-out integrated circuit (ROIC), 20 µm diameter active area, 64 µm pitch, with µ-lens array F/7 optical path, 7 mm diameter entrance aperture
- 90% quantum efficiency
- >1000 APD gain, more than sufficient to override ROIC noise
- Linear mode photon counting (LMPC) detectors from visible to mid-wave infrared (VIS/MWIR) wavelength range.

BUS
- HgCdTe responds from 0.4 to 4 microns to single photons (1000 electrons per photon)
- AC9 will use narrowband filters to pass 1.06, 1.55 and 2.06 microns for daylight operation
- Launch Nov 2016 (delivery Aug 2016)

Optical Path
- 1. Dewar
- 2. Stirling cycle cooler
- 3. IDCA controller
- 4. FPA conditioning circuits
- 5. Radiator structure
- 6. Warm filter and objective lens

LMPC CubeSat – Aerospace AeroCube-9 (AC-9)

Diode Side View
- AR Coating
- 5-7 µm
- P-Type MCT
- N-Type MCT
- CdTe Passivation
- Pre-amp input pad
- Readout Integrated Circuit (ROIC)

Top View
- IFOV=0.1°
- Warm Filter
- Objective Lens
- Dewar Window
- Cold Filter (2)
- Cold Shield
- Microlens Array
- Focal Plane Array

AC9
- Filter wheel with 5 settings
- 3 Bandpass filters
- 1 blank (opaque)
- 1 open

Launch Nov 2016 (delivery Aug 2016)

Filter wheel with 5 settings
- 3 Bandpass filters
- 1 blank (opaque)
- 1 open

HgCdTe responds from 0.4 to 4 microns to single photons (1000 electrons per photon)

AC9 will use narrowband filters to pass 1.06, 1.55 and 2.06 microns for daylight operation

Launch Nov 2016 (delivery Aug 2016)
Why Fly a Linear Mode Photon Counting Detector?

At least three Tier 1 missions are strongly driven in science capability by photon detection sensitivity
- LIST which is strongly related to ICESat & DESDynI will not reach threshold goals without single photon response matched to high power efficient transmitters that respond to 1 micron
- While threshold science can be achieved with photomultipliers for CO2 at 1.5 and 2 microns, single photon response will significantly extend the science
- The potential for high sensitivity passive arrays across the 0.4-4 micron HgCdTe response shows potential for many other missions as this technology and its support elements mature
Packing Density View

IDCA PAYLOAD
- Located centrally inside satellite
- Radiator/payload hard mount to body by solid brackets that are mechanically fixed but made from thermally isolating material.

RADIATION DETECTOR
- Commercially available Teledyne Dosimeter
- Uses AC8 Derived daughter PCB
- Co-Located with IDCA sensor

ACS COMPONENTS
- All ACS components hard mount to body around primary payload

SINGLE STAGE LASER
- Output of laser co-bore sighted with IDCA sensor

Sensor
Enabling Technology: Linear Mode HgCdTe e-APD

- High, near noiseless, uniform, avalanche gain
- Gain normalized dark current as low as 100 e/s
- Broad spectral range: UV – MWIR
- High quantum efficiency
- High intrinsic bandwidth (~ 10 GHz)
- Large dynamic range
- Demonstrated photon counting sensitivity
- Continuous operation with no dead time or after-pulsing
 - Minimum time between events MBE < ~ 10 ns (limited by current ROIC bandwidth)

APD Gain vs. Bias

- 53 Pixels
 - M = 1270 @13.1 V
 - s/mean = 4.5 %

Excess Noise Factor vs. Gain

- Theory for Ideal k = 0
 - (McIntyre History-Independent)
- Measured data

Broad Spectral Response

- 8 ns pulse separation (ROIC BW limited)

High SNR Single Photon Sensitivity
Blocking Noise from ROIC Glow

16-Pixel-Mean PDE vs. FER

- A8327-14-2 (No metal shield)
- A8327-14-1 (With metal shield)

Pixel-by-Pixel FER Comparison

- No mirror blocking metal
- With mirror blocking metal

All pixels:
- >50% PDE

"Tab" metal shield

FER ≤ 200 kHz for every pixel with blocking metal layer, a 1/5 reduction. Multiple metal layers are expected to decrease FER to diode limit (< 20 kHz).

ROIC Glow Photons

- No metal shield
- With Metal shield

Si ROIC

HgCdTe Array

10/27/14

© The Aerospace Corporation 2015

Sun et al., ESTF 2014, Paper B4P5
LMPC HgCdTe e-APD Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GSFC ACT Program Specification</th>
<th>Oct. 2014 Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size and form factor</td>
<td>2x8 pixel array, 20 µm dia, 64 µm pitch</td>
<td>Demonstrated</td>
<td>Form factor can be changed if funds available for a new ROIC</td>
</tr>
<tr>
<td>Photon Detection Efficiency 0.9 to 4.2 µm</td>
<td>> 40% (> 50% goal)</td>
<td>> 50% (> 65% demonstrated)</td>
<td>From optical input to the analog outputs</td>
</tr>
<tr>
<td>Dark count rate</td>
<td>< 500 kHz (<100 kHz goal)</td>
<td>< 200 kHz demonstrated</td>
<td>Including detector dark current, ROIC and system noise</td>
</tr>
<tr>
<td>Pulse pair separation</td>
<td>≤ 10 ns (< 6 ns goal)</td>
<td>9 ns demonstrated</td>
<td>Stray capacitance limiting bandwidth</td>
</tr>
<tr>
<td>Timing jitter</td>
<td>< 1.0 ns rms (< 0.5 ns rms goal)</td>
<td>~1.6 ns rms (< 1 ns rms in 2011 FPA)</td>
<td>Improvement with smaller pitch APDs pixel designs expected.</td>
</tr>
<tr>
<td>Excess Noise Factor</td>
<td>< 1.4</td>
<td>Demonstrated</td>
<td>1.2-1.25 Decreased diode junction width</td>
</tr>
<tr>
<td>Outputs</td>
<td>Analog and Digital (optional)</td>
<td>Demonstrated</td>
<td>Linear mode multi-photon resolution with analog outputs</td>
</tr>
<tr>
<td>Housing</td>
<td>LN2 Dewar (80K) with window, f/1.5 to f/4.9</td>
<td>Demonstrated</td>
<td>May be housed in an existing long lifetime space cryo-cooler</td>
</tr>
<tr>
<td>Simultaneity of Specifications</td>
<td>All specifications met at the same time</td>
<td>Demonstrated with exception of jitter</td>
<td>All spec’s met, except jitter, at the same time on the same device at the same threshold.</td>
</tr>
</tbody>
</table>
Physical Dimensions of the Cooler and Cold Filter Performance

Basic Dimensions of the Integrated Detector Cooler Assembly

The background count rate was calculated using:

- Materion’s measured cold filter transmission
- QE from previous LMPC APD array (analysis uses 300 K blackbody temperature, dual stacked cold filters, f/7, and a (64 µm)^2 detector.)

The total expected background count rate is 103 kHz

Stacked filter transmission is very good (>90%) at 1064 nm, 1572 nm, and 2060 nm
Overall System Block Diagram

Analog board

- analog Power Supplies
 - Pre-Filter
 - Linear Capture
 - High-speed Capture & MUX
 - Photon Counters

Digital board

- digital Power Supplies
 - Capacitive Isolators
 - Zynq 7020 SoC (ARM + FPGA)
 - FPGA LPDDR2
 - ARM LPDDR2
 - Flash (QSPI, μSD, Atmel)

Main Vehicle Bus (Power, GPS Time, Tx2/Rx2, Tx1/Rx1)

Control and Status

DRS Sensor Connector (Power, analog outputs, status)
Three Data-Capture Subsystems

16x Analog Signals from DRS HgCdTe detector

Low-pass Filter e.g. LFCN-105 ($F_{3db}=180$ MHz)

16

Photon Counters (16 Channel)

Thresholds 16

2×LTC2605 (16-bit DAC×16)

Comparators (ADCMP605)

16

Linear-mode (16 Channel)

Low-pass ($F_{3db}=7$ MHz)

AD9249 (65MSPS×16)

16

High-speed (Single Channel)

16

16:1 MUX (ADG782)

AD9286 (500MSPS×1)

Note: I²C/SPI control signals omitted for clarity

FPGA

ARM

Main Bus (Isolated)

8 GB µSD Card

8 MB Backup Flash

16+ MB Boot Flash

16+ MB Boot Flash

2 GB LPDDR2 (667 MT/s)

1 GB LPDDR2 (667 MT/s)
AC9 Launch Options

- NASA CSLI Option 1
 - 450 km x 820 km x 99 deg inclined
 - Aug 2016 delivery to Integrator
 - Nov 2016 launch

- NASA CSLI Option 2
 - 600 km SSO 10:30 LTDN
 - April 2016 delivery to Integrator
 - July 2016 launch
L1 Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The LMPC shall measure near and short wave IR sources with the 2X8 Mercury Cadmium Telluride (MCT) electron Avalanche Photo Diode (e-APD) focal plane array (FPA) for 1 year to support the component needs for future NASA missions</td>
</tr>
<tr>
<td>2</td>
<td>The LMPC shall detect laser light from a ground source</td>
</tr>
<tr>
<td>3</td>
<td>The LMPC shall perform a radiometry assessment by scanning the Earth's moon for response calibration</td>
</tr>
<tr>
<td>4</td>
<td>The LMPC shall conduct a variable radiometric response experiment by imaging the sunlit Earth and clouds (i.e. no laser source)</td>
</tr>
<tr>
<td>5</td>
<td>The vehicle shall conform to CubeSat standards</td>
</tr>
<tr>
<td>6</td>
<td>The LMPC shall measure the effects of space radiation on the dark current, APD gain and quantum efficiency of a 2x8 HgCdTe electron Avalanche Photo Diode (e-APD) focal plane array (FPA) in a relevant space environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The LMPC shall be compatible with an optical communications link</td>
</tr>
<tr>
<td>2</td>
<td>Measure an atmospheric gas absorption line</td>
</tr>
</tbody>
</table>
Summary

• Demonstrate single photon detection in space compatible with dark current

• Present status:
 – *Despite the relative early stage of the LMPC ACT-10 2 by 8 array, AC9 will have the ability to resolve a 13kcount or greater increase in dark current induced by the radiation exposure*
 • Developments under other programs have significantly reduced systematic background counts due to ROIC glow and pixel jitter to < 1 ns
 – *The ideal coating performance of the Materion cold filters insures relevant performance at the 3 principal earth science lines*
 – *Current performance of AC9 star trackers with potentially 0.01 degree open loop pointing opens relevant optical communication demonstrations*
 – *Impact of cryo-cooler vibration on spacecraft*
 • Linear acceleration RMS = [0.0133, 0.0141, 0.0096] g
 • Angle (jitter) RMS = [0.06, 0.36, 0.15] milli-deg (nominal R_gyro)
 • Angle (jitter) RMS = [0.06, 0.51, 0.77] milli-deg (bounding case R_gyro)

Even the tight 0.1 degree pointing will not be affected by cryo-cooler vibration