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Objectives

We are developing a radar transceiver, tunable over the 183 GHz water absorption
line, to enable high-resolution humidity sounding inside upper-tropospheric clouds.

The proposed measurement will use the technique of differential absorption radar.

The key transceiver performance targets are:
* 1 W transmit power
* Frequency-modulated, continuous wave (FMCW) radar operation
* 5% tuning of center frequency
* 500 K receiver noise temperature
* Compact, all-solid-state semiconductor design

Our approach builds on proven short-range radar systems JPL has developed at 340
and 680 GHz for national security applications.



Scientific Motivation

Clouds are the single most important source of uncertainty in predictions of climate
sensitivity.

Upper-Tropospheric (UT) humidity affects cloud formation and radiative feedback,
and therefore accurate measurements are needed for climate modeling.

Conventional UT humidity measurements rely on passive radiometric sounding
using the strong 183 GHz water vapor absorption line.

Problem: passive radiometry is unreliable inside clouds because: (1) broad
weighting functions are used that encompass both clouded and cloud-free regions
and (2) clouds obscure the relationship between passive brightness temperatures
and water vapor.

Isolated observations show large relative humidity variability in UT cirrus clouds,
spanning 50-150%. These variations are not currently quantified globally.

Therefore, a remote sensing instrument capable of measuring humidity inside cirrus
clouds on a global scale is needed.



Connections to Decadal Survey and Other Applications

Science Focus Area: Climate Variability and Change.
e UT humidity disproportionally affects water vapor feedback
* Ice crystal habit, nucleation, and growth are driven by UT humidity, and they
couple to earth’s radiative transfer and global energy/water cycles

A 183 GHz humidity sounding radar will be complementary to two missions: ACE
(cloud/aerosol microphysics) and PATH (temperature and humidity soundings).

The radar will leverage technology developed by several past ACT & IIP investments
in extremely high frequency amplifiers (Pls Fung, Kangaslahti, Reising, and
Lambrigsten) using state-of-the-art Ill-V semiconductor processes.

Compact transceiver is appropriate for UAV and CubeSat platforms (e.g., no vacuum
tube sources), and it has potential for measuring accurate cloud heights for
moisture retrieval model accuracy.

If re-tuned to 220 GHz atmospheric transmission window, the transceiver enables:
measurements of particle size distributions, cloud-penetrating altimetry, low-
altitude cloud sensing above arctic ice cracks, and national security applications.



JPL’s Approach: 183 GHz Differential Absorption Radar

* Concept: use the scattering of ice crystals in cirrus clouds to measure range-resolved differential
absorption of radar signals on and off the 183 GHz water line.

* Similar to widely used lidar techniques (DIAL) and microwave differential absorption at 60 GHz
to measure integrated O, absorption from sea surface reflection.

*  But our concept offers range resolution inside clouds, wide frequency tuning to penetrate
clouds with large dynamic range of water content, and measurement capability from above or

below clouds.
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Flight Heritage for 183 GHz Radar Proposal

Chlorine Monoxide and the Ozone Hole: 1991 and 1992
measured by UARS MLS; from Waters et al., Nature, 123, 597 (1993)
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JPL’s FMCW Radars Above 300 GHz

Frequency-modulated continuous wave (FMCW) ‘ -
radar: appropriate when available power is limited. ? : - /52| 680 GHz imaging radar
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Generating Power >100 GHz at JPL
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Detecting Signals >100 GHz at JPL
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Maximizing Schottky Diode Power and Efficiency

Breakthrough power-combining technique

38 GHz i
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High-lsolation Duplexing >100 GHz

Quasioptical Duplexing:
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183 GHz Transceiver Plan

GaAs 183 GHz quad doubler
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* All-solid-state, room-temperature 183 GHz transmitter & receiver to achieve smallest SWAP.

 Highest transmit power practical & most sensitive receiver possible, to measure backscattered
signals from the weakest clouds.

* Ultra-high transmit/receive isolation for continuous-wave measurements.

* Wide tunability over the 183 GHz water line for probing a variety of cloud densities and depths.

* First develop transceiver as piecewise-component assembly, then integrate multiple devices into

single block

(s).
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Schottky Diode Designs

183 GHz subharmonic mixer
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Schottky Diode Designs

183 GHz high-power frequency doubler

- junction capacitance optimized input power

old design 54 fF 250 mW (per diode set)

new design 69 fF 500 mW (per diode set)

Enabling design innovations:
- bigger anode for power handling
substrate for heat conduction
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Diode Microfabrication

Devices fabricated for seven projects.

Wafer Ma
P 4 GaAs wafers processed simultaneously.
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Horn & Twist Designs

3D model of twist-waveguide cavity:
can be machined in split-
block waveguide

Smooth-walled spline 183 GHz horns:

Highly Gaussian beams

Very low sidelobes and low cross-pol
Ensures maximum duplexer isolation
Easily machined (compared to corrugated)

-10

190 200 210
frequency (GHz)

freq =180 GHz

30 ‘ ‘ .
B2 —Co-Pol Phi=0 [deg.]
—Co-Pol Phi =90 [deg.]
20 —Co-Pol Phi = 45 [deg.]

- -X-Pol Phi =45 [deg.]

10

Gain [dB]

-10}

80 -60 -40 -20 O 20 40 60 80
theta [deg.] 17



W-Band Power Amplifier Plan

2W
output,
Year 1 Plan: Vendor-supplied WR-10 flange JPL-built
“standard” vendor PA block W-band PA block I quad-chip doubler
. . 1
driving JPL quad-input :
doubler. The doubler block v
includes power dividing. - -
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. . ’
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vendor PAs in a compact
module.

(Year 2/3 Plan: two power-
combined quad doublers)
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W-Band Power Amplifier Testing

- * Achieves >2 W goal over 91.5-96.5 GHz

Raytheon/Millitech * Easily exceeds 4 W at 92 GHz!

PA test bench *  Must make choice between operating on lower
or upper flank of 183 GHz line. These devices
are appropriate for upper flank (183-193 GHz ->
91.5-96.5 GHz).

* Lower-flank of water line offers somewhat
smaller background absorption, but W-band PAs
are optimized for 94 GHz atmospheric
transmission window (e.g. Raytheon’s Active
Denial System).

* Ready to test high-power quad-doubler with

this module
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Conclusions

183 GHz differential absorption is a promising technique for measuring range-resolved
humidity inside upper-tropospheric clouds.

FMCW-based radar approach is proposed, relying on:
* all-solid-state semiconductor devices for compact size, wide frequency tuning
* high efficiency, high power Schottky diode frequency multiplication
* state-of-the-art W-band power amplifiers
* highisolation transmit/receive duplexing

Highlights of progress to date:
* New diode designs for 183 GHz doubler, 183 GHz mixer
* Block designs for waveguide twist, spline-profile horn, power splitting/combining
structures, low-noise amplifier, and W-band tripler
* Demonstrated >2 W GaN amplifier module to pump new quad-183 GHz doubler

diodes
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