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SWIS CubeSat, artist’s concept 



Introduction 

•  Imaging spectrometry places heavy 
demands on satellite in terms of aperture 
size, data volume, and power resources 

 
•  To stay within CubeSat resources: 

•  No cryogenic temperatures (limits 
wavelength range) 

•  Low data volume and rate (limits area 
coverage to specific target areas) 

•  Limited spatial resolution / telescope 
aperture 

•  Coastal ocean science and snow cover 
monitoring are two critical niche applications 
that can be potentially served by CubeSats 
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SWIS CubeSat, artist’s concept 



Research and applications 

 

Coastal ocean spectral 
signatures (H. Dierssen), 
mainly below 900 nm 

Snow spectral signatures  
(T. Painter) contain critical 
features in 1000-1500 nm 
range 

Snow at various grain sizes Fresh vs. dust-laden snow Frozen vs. melting snow 

Snow cover: Spectral signatures of snow in various states demonstrate the utility of 
spectroscopy in understanding energy transfer and hydrology  

Coastal science: Complex spectral signatures from the coastal environment 
demonstrate that heritage multi-spectral sensors are inadequate 

•  High temporal variability makes consistent airborne monitoring costly 
•  High spatial variability requires higher resolution than heritage sensors 

Coral, algae, 
and sand at 
different water 
depths 

Ceratium furca bloom 
in Monterey Bay 

Submerged aquatic 
vegetation 

Floating aquatic 
vegetation 
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Research and applications 

SWIS 
Resolution 160m from 500km orbit 

Swath 640 spatial elements 

Mission lifetime ~2 years (no propulsion) 

Target frequency Global daily coverage with 6 
CubeSats 

Application Coasts, snow cover 

*Global coverage at low (~1 km) resolution subject to 
future data transmission rate improvements 

To access any point on the 
globe on a given day: 
•  6 CubeSats, 500 km orbit 
•  10o Field of view 
•  50o Field of regard with 

pointing 
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Optical Design 

Spectrometer and telescope inside 
6U CubeSat frame  
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SWIS specifications 
Spectral range 350-1700 nm, 

single FPA 

Spectral sampling 5.7 nm 

Cross-track 
spatial elements 

600 (+40 monitor) 

Cross-track FOV 10o 

Resolution 0.3 mrad 

Detector pixel size 30 mm 

Focal length 100 mm 

F-no 1.8 

Uniformity 95% 

Mouroulis et al, Proc. SPIE 9222, Imaging Spectrometry XIX (2014) 

grating 

slit 

double 
TIR prism 

detector 
and filter 

TMA telescope 
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•  E-beam writing on concave substrate is well 
calibrated (minimal field boundaries within each 
annular writing height zone) 

SWIS E-Beam calibration test grating  
(Uncoated resist grating, partial area): 

Atomic Force Microscope profile and simulated efficiency of 
SWIS Test Grating 

Optical design: Diffraction grating 

•  Further calibration of the resist exposure details at 
50kV e-beam voltage (recently switched from 100kV) 
on this substrate (BK7) should produce better 
agreement on future runs 

June 2015 



Optical Design: Stray light 

•  Ghosts have been minimized with: 
•  Judicious positioning of the slit  
•  Optimization of dispersion to exclude 

zero order reflected ghosts 
•  Ensuring that all reflected ghosts are 

returned in negative (weak) grating 
orders  

•  Undispersed spatial ghost at ~1140 
nm handled by appropriate 
positioning of OSF 

•  Development of special LVAR 
detector coating Irradiance distribution on the detector for 6 finely 

sampled 10nm wavelength bands covering most of the 
field of view (log scale) 

•  Significant concern; drives design 

•  Spatial ghosts <1e-3, depend critically on detector and OSF etalon reflections 
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Mouroulis et al, Proc. SPIE 9222, Imaging Spectrometry XIX (2014) 



LVAR coating development 

LVAR coating on silicon coupon (Teledyne 
Internal Company Proprietary) 
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LVAR coating testing (Teledyne Internal Company Proprietary) 
 



Optomechanical design 

Dyson Spectrometer and TMA telescope 
fit in 4U of 6U CubeSat 

Grating 

M1 

Dyson Lens 

M3 

M2 

Prism 

Slit 

FPA 
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Optomechanical design 

 
•  Telescope housing designed for ease of 

machining and assembly 

•  Spectrometer assembly leverages airborne 
Dyson spectrometer design heritage with 
enhancements to grating mount 
 

•  Interfaces between mounts, elements, and 
components are designed to avoid 
hysteresis; Common materials and relatively 
simple fabrication 

   
 

SWIS Optomechanical System 
(bipods and telescope housing hidden)  
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Diffraction grating mount 

6X Bonded-in 
Flexures 

Tangent Rod 

Grating Surface Deformation FEM  

72nm 

Grating mount with clocking 
adjustment tangent rod for high 
accuracy and stable clocking 
adjustment 
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Focal Plane Array Mount  

FPA 6 DOF Mount 
•  Design tested on previous JPL imaging 

spectrometers including M3 

•  Capable of sub-micron resolution  
 

 

Tip-Tilt-Piston 
Rods 

“Spectral” Translation/ 
Clocking Rods 

“Spatial” Translation Rod 

View of FPA mount showing adjusters and 
heat strap attachment 

Heat Strap Attachment 
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Calibration Mechanism 

Diffuser Mount/Bright Cal Shutter 

Drive Pulley 

Dark Cal Pulley 

Bright Cal Pulley 

Dark Cal Shutter 

Drive Cable 

Holes covered with 
“blanket” 

Diffuser Mount/Bright 
Cal Shutter 

Stepper w/1024:1 
Gearhead 

Dark Cal Return Spring 
Bright Cal Return Spring 
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Calibration Mechanism 

Calibration Mechanism Features 
–  Single COTS Stepper Motor 
–  Drive cable operating in tension 

against return spring 
–  Actuates bright and dark calibrators 
–  Releases launch latch 
–  Simple, low-cost COTS shape 

memory actuator for fail-open  
 

 

Calibrator Drive Mechanism  Bright Cal Light Path  Launch Latch  
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Diffuser material testing 

•  Diffuser material (Heraeus OM100) found to 
satisfy requirements  

•  Diffuser testing performed in an arrangement 
that simulates the position of the sun and the 
location of the diffuser in the CubeSat 

http://www.heraeus.com 

Heraeus OM100 

Microphotograph shows uniformity 
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Spectrometer and telescope in 6U CubeSat frame  
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Diffuser material testing 
Diffuser testing setup position of the sun and the 
location of the diffuser in the CubeSat 
  

Expected radiance equivalent to a surface with a 
reflectance of 10-13% 
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Reflective 

Transmissive 

Diffuser 



Attitude Control - BCT XACT  

Star Tracker 

Sun Sensor 

S-Band Transmitter 
C&DH Board 

Electric  
Power System 

Solar Panels 

SWIS Instrument 

6U CubeSat Structure 

Payload Electronics 

Radiator 

S-Band 
Patch Antenna 

GPS Sensor 

Instrument  
Calibration Slit 

Complete CubeSat configuration with 6U structure, attitude control unit, 
radio, power electronics, and custom FPA electronics 

CubeSat configuration 
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CubeSat configuration 

Spacecraft designed to fit within a 
6U Canisterized Satellite Dispenser 
(Planetary Systems Corporation) 
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Complete CubeSat configuration within 6U structure 



•  We present an imaging spectrometer design 
suitable for CubeSat applications requiring high 
throughput (SNR)  

•  Advances the state of the art in compact sensors of 
this kind in terms of size and spectral coverage  

•  Design optimized to minimize stray light, including 
utilization of linear variable antireflection (LVAR) 
detector coating 

•  Innovative single drive performs dual mechanism 
function of positioning the on-board calibrator (OBC) 
as well as providing a shutter for dark frames 

•  Diffuser material identified for solar calibration 
•  Preliminary spacecraft configuration design 

favorable for accommodation in 6U CubeSat frame 
•  Useful missions can be designed with high spatial 

and temporal resolution to address targeted areas of 
the Earth’s surface 
 
 

Summary & Conclusions 

SWIS CubeSat, artist’s concept 
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