The Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH)
Science Data System

Earth Science Technology Forum (ESTF2014)
Thursday, October 30, 2014

Hook Hua¹, Susan Owen¹, Sang-Ho Yun¹, Paul Lundgren², Angelyn Moore¹, Piyush Agram¹, Gian Franco Sacco¹, Eric Fielding¹, Paul Rosen¹, Frank Webb¹, Mark Simons², Alexander Smith¹, Brian Wilson¹, Timothy Stough¹, Peter F. Cervelli⁴, Michael Poland³

¹ Jet Propulsion Laboratory
² California Institute of Technology
³ USGS Hawaiian Volcano Observatory
⁴ USGS Menlo Park Science Center

Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.
Natural Hazards

known or inferred Holocene volcanoes (Smithsonian Global Volcanism Program)

shallow earthquake epicenters (>50 km depth) on land with a magnitude of 6.5 or higher since 1976

extreme flood events (Dartmouth Flood Observatory, from 1985-2003)

subject to landslides (Norwegian Geotechnical Institute and UNEP-Grid Geneva).
Automated data systems are required to analyze large quantities of data from NASA NISAR (formerly DESDynI), other satellite missions, and rapidly expanding GPS networks.

Going from Artisan to Automation: Use system engineering approach to translate specialized data analysis into operational capability.

Demonstrate response to hazards with standardized set of data products for decision & policy makers.
Data Acquisition Latency of InSAR Missions

Expected wait time until the first SAR satellite to visit after an event

Ascending + descending orbit

Anywhere on Earth, a radar satellite passes overhead at least once per day.

Present: 15 hours

2020: 8 hours

Source: Sang-Ho Yun (JPL)
Elastic Processing, Data Management, and Monitoring
• **High-volume, low-latency**, and automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring.

• Enabling both **science and decision-support** communities to monitor ground motion in areas of interest with InSAR and GPS data.

• Leverage and geographically optimize **hybrid Cloud**-based processing and data management of geodetic data products

• **Monitoring and Subscriptions**
 – Event streams from USGS NEIC
 – Data product streams

• **Conditional actions** for triggering of geodetic data processing

• **Situational awareness** for
 – Near real-time information
 – Data system health
Near Real-Time Big Data Streams

• JPL/Caltech/ASI collaboration effort opens flood of COSMO-SkyMed (CSK) data for select regions
 – Provides access to CSK X-band Level-0 SAR radar data from the Italian Space Agency (ASI)
 – COSMO-SkyMed (CSK) data provided as part of a technical collaboration between JPL-Caltech and the Center for Earth Observations (CIDOT), Italian Space Agency (ASI)
 – CSK constellation of 4 satellites has acquisition capacity of 450 frames/day for each satellite
 • 1 frame = 40 x 40 km swath, 3m resolution, 1.2 Gb
 – Example: San Andreas Fault region of California
 • 580 GB of raw data every 16-day cycle, about 500 frames.
 • Downstream derived data products increase data volume 50X+

• NISAR
 – L-band SAR
 – Deliver ~85TB data products per day to DAACs (~1GB/sec sustained)

• Sentinel 1A/1B
 – C-band SAR
 – 1.2TB/day raw data

• Data movement and storage concerns for handling global-scale coverage
Near Real-Time Data Source

CSK Scene Footprints: Rolling 1-day view

Satellite observation of granules from Italian X-band Level-0 SAR radar data
Near Real-Time Data Source
CSK Scene Footprints: Rolling 16-day cycle view

Satellite observation of granules from Italian X-band Level-0 SAR radar data

- CSKS1
- CSKS2
- CSKS3
- CSKS4

Image Landsat © 2013 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2013 INEGI
Interferogram Processing Workflow (1 of 2)

1. **Raw Data Ingest**
 - $T_n F S_n D_n$

2. **ISEE Network Selection**
 - *Peg*$_{12}$ *Dop*$_{12}$
 - *Peg*$_{13}$ *Dop*$_{13}$
 - *Peg*$_{24}$ *Dop*$_{24}$
 - *Peg*$_{34}$ *Dop*$_{34}$
 - *Peg*$_{35}$ *Dop*$_{35}$
 - *Peg*$_{46}$ *Dop*$_{46}$

3. **Optimize**
 - Spatial
 - Temporal
 - Doppler Baselines

4. **Execute after some months accumulating data**

5. **Interferogram Generation**
 - *Int- gen* $I_{12} A_{12}$
 - *Int- gen* $I_{13} A_{13}$
 - *Int- gen* $I_{24} A_{24}$
 - *Int- gen* $I_{34} A_{34}$
 - *Int- gen* $I_{35} A_{35}$
 - *Int- gen* $I_{46} A_{46}$

6. **tropo Map**
 - $I_{12} A_{12}$
 - $I_{13} A_{13}$
 - $I_{24} A_{24}$
 - $I_{34} A_{34}$
 - $I_{35} A_{35}$
 - $I_{46} A_{46}$

7. **unwrap**
 - $I_{12} A_{12}$
 - $I_{13} A_{13}$
 - $I_{24} A_{24}$
 - $I_{34} A_{34}$
 - $I_{35} A_{35}$
 - $I_{46} A_{46}$

8. **Cont’d Next Page**

9. **Cont’d Next Page**

10. **2014-10-30T08:30-04:00**

 ESTF 2014 : ARIA-MH
Interferogram Processing Workflow (2 of 2)

Repeated from previous page

GIAnT Time Series Processing

SBAS or NSBAS or MInTS

T1 Time-series

T1FS1 Time-series

mosaic

T2 Time-series

mosaic

T3 Time-series

Large-area Mosaicking of time-series accounting for disparate incidence angles

... etc. for all tracks
• ARIA-MH used for continuously monitoring for availability of new CSK scenes over La Habra with beam 5 and track 111.
• Automated interferogram processing
• Based on CSK 1.3cm X-band data
Italian Space Agency (ASI) activated crisis response for this event
First overflight of the area by COSMO-SkyMed X-band radar on 8/26/14
Data delivered to ARIA data system on 8/26/14 at 11 pm
ARIA generated map of deformation field ("interferogram") on 8/27/14 by 4 am
Each fringe represents 1.5 cm of motion
Delivered to California earthquake Clearinghouse at 6 AM
In use by Calif. Geological Survey field teams
Damage Proxy Map

• Coherence change time series

Source: Sang-Ho Yun (JPL)
Damage Proxy Map

- Site 5: Pasadena Convention Center foundation

DPM

2007.10.23

2008.01.09

Source: Sang-Ho Yun (JPL)
Super Typhoon Haiyan Damage in Tacloban, Philippines Imaged with COSMO-SkyMed

- 2013-11-08 00:00 (UTC): Haiyan hit Philippines
- 2013-11-11 (Day 3): COSMO-SkyMed (X-band) data acquired
- 2013-11-11 (Day 3): Damage Proxy Map produced by ARIA
- Map distributed to organizations responding to the disaster.

Damage Proxy Map (DPM)

Overlay of DPM and damage grade building footprints derived from independent assessment.

Damage grade polygons derived by Copernicus Emergency Management Service from visual interpretation of pre-event and post-optical images.
Projects Currently Utilizing ARIA-MH Capabilities

- CaliMap (JPL/Caltech/ASI)
 - California coverage since 2013-05-24
 - 12 complete 10,000+ possible pairs
 - CSK data -25% of pairs meeting interferable criteria
 - cycles ascending and descending

- Dynamic Processes (AGI)
- Active Volcanoes (NASA ESI)
- Antarctica Monitoring (NASA Cryosphere Science)
- Asal Rift (NASA ESI)
- Other analysis projects benefiting from ARIA-MH web services
 - Slumgullion landslide
 - San Francisco Bay Faults
 - Baja California post-seismic analysis
 - La Habra earthquake analysis

- Note: CSK data stream is used as a testbed to design and verify the ARIA-MH infrastructure. There is no plan to provide a long-term "service" to the general community on behalf of the Italians for access to CSK data and products, but we can make interferogram products available in the long-term.
Projects Supported by ARIA-MH (AIST 2011)

- Afar/Asal Rifts Volcanism
- 2013 Sudan Floods Disaster
- CaliMap Tectonics Hydrology Disaster
- 2013 Colorado Floods Disaster
- 2013 Pakistan Earthquake Tectonics
- 2012 New York City Hurricane Sandy Disaster
- 2013 Colorado Floods Disaster
- 2013 Pakistan Earthquake Tectonics
- North Anatolian Fault, Turkey Tectonics, Disaster
- 2012 New York City Hurricane Sandy Disaster
- 2013 Colorado Floods Disaster
- 2013 Pakistan Earthquake Tectonics
- Sierra Negra Volcanism
- Copahue Volcanism
- 2013 Potenza Italy Landslide Dynamics

All test sites make use of COSMO-SkyMed (CSK) data Provided by ASI-CIDOT (Italian Space Agency – Earth’s Observation Data Interpretation Center)
Motivation for Cloud Computing

• Incoming flood of data volume
 – Nominally 1.2GB/scene
 – 100Ks of scenes
 – 10GBs-100GBs temp storage per data product processing
 – PBs-scale data products
 – Example InSAR satellites
 • COSMO-SkyMed (CSK) and CSK second generation data from ASI
 • Sentinel 1A/1B
 • ALOS-2
 • Decadal Survey: proposed NI-SAR mission (US L-band SAR)

• “Embarrassingly parallel” data product generation

• Monitoring, Subscriptions, and Actions
 – User definable bounding box regions of interest for nominal background monitoring/processing.

• Elasticity of computing when responding to events

• Process migration to geographically disperse data centers
 – ESDIS DAACs (e.g. ASF)
 – UNAVCO SAR Archive
 – ASI for CSK
 – DLR for TerraSAR-X
 – JAXA
 – Various GEO Supersites
Compute, Data, & Cost Estimates

- Notional analysis comparing local hardware purchase versus AWS GovCloud usage
 - Process 16-days of data in at most 8-days.
 - 26K compute hours on 8-core nodes (3 years wall-clock processing)
 - EC2 instances with
 - Persistent EBS for cached data
 - Ephemeral local VM disk for scratch disk
 - Use AWS Glacier for cheaper long term storage (with lower data access latency)
 - Break-even point before 1-year mark
 - AWS market prices frequently changes *(estimate already outdated)*
 - Costs based on today’s dollars. Does not account for inflation. Does not account for future AWS price drops.
 - On-premise costs do not consider overhead costs of cooling and electrical

Cumulative months

<table>
<thead>
<tr>
<th>Local Cluster (Cumulative)</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term Storage</td>
<td>$460.1</td>
<td>$2.7</td>
<td>$11.9</td>
<td>$27.5</td>
<td>$49.7</td>
<td>$78.3</td>
<td>$113.4</td>
<td>$155.0</td>
<td>$203.0</td>
<td>$257.6</td>
<td>$318.6</td>
<td>$386.1</td>
</tr>
<tr>
<td>Transfer Fee for LTS data</td>
<td>$0.0</td>
</tr>
<tr>
<td>Transfer Fee for results</td>
<td>$0.0</td>
</tr>
<tr>
<td>CPU</td>
<td>$135.0</td>
<td>$11.3</td>
<td>$22.5</td>
<td>$33.8</td>
<td>$45.0</td>
<td>$56.3</td>
<td>$67.5</td>
<td>$78.8</td>
<td>$90.0</td>
<td>$101.3</td>
<td>$112.5</td>
<td>$123.8</td>
</tr>
<tr>
<td>Total</td>
<td>$14.0</td>
<td>$34.4</td>
<td>$61.3</td>
<td>$94.7</td>
<td>$134.6</td>
<td>$180.9</td>
<td>$233.7</td>
<td>$293.0</td>
<td>$358.8</td>
<td>$431.1</td>
<td>$509.9</td>
<td>$595.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amazon GovCloud (Cumulative)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term Storage</td>
<td>$0.21</td>
<td>$1.1</td>
<td>$3.2</td>
<td>$7.0</td>
<td>$13.0</td>
<td>$21.6</td>
<td>$33.4</td>
<td>$48.9</td>
<td>$68.5</td>
<td>$92.8</td>
<td>$122.2</td>
<td>$157.3</td>
</tr>
<tr>
<td>Transfer Fee for LTS data</td>
<td>$0.97</td>
<td>$5.2</td>
<td>$15.1</td>
<td>$32.9</td>
<td>$61.0</td>
<td>$101.7</td>
<td>$157.3</td>
<td>$230.2</td>
<td>$322.6</td>
<td>$436.9</td>
<td>$575.4</td>
<td>$740.5</td>
</tr>
<tr>
<td>Transfer Fee for results</td>
<td>$0.00</td>
</tr>
<tr>
<td>CPU</td>
<td>$6.22</td>
<td>$18.7</td>
<td>$37.3</td>
<td>$62.2</td>
<td>$93.3</td>
<td>$130.6</td>
<td>$174.2</td>
<td>$223.9</td>
<td>$279.9</td>
<td>$342.1</td>
<td>$410.6</td>
<td>$485.1</td>
</tr>
<tr>
<td>Total</td>
<td>$7.40</td>
<td>$25.01</td>
<td>$55.65</td>
<td>$102.14</td>
<td>$167.31</td>
<td>$253.96</td>
<td>$364.92</td>
<td>$503.01</td>
<td>$671.05</td>
<td>$871.85</td>
<td>$1,108.23</td>
<td>$1,383.01</td>
</tr>
</tbody>
</table>
Hybrid Cloud Computing
Science Data System (HySDS)

- Utilizes both on-premise and off-site infrastructure
 - Leverage existing infrastructure investment
 - PB-scale processing and storage in public cloud currently too expensive

- Hybrid Cloud data system architecture
 - **Burst out** to public cloud when demand exceeds on-premise resources
 - Deploy AWS-compatible Eucalyptus cloud stack on-premise

- **Heterogeneous** computing nodes
- Resource management and data discovery can run anywhere
- Deploy **localized data repositories** closer to processing VMs
- Leverage **Amazon GovCloud US** to address export control and firewall security issues

On-premise (e.g. JPL)

- InSAR Processing
- Storage Services
- Discovery Services

Virtual Machines

- ISCE
- ISCE
- ISCE

Off-site (e.g. Amazon GovCloud US)

- InSAR Processing
- Storage Services
- Resource Management

Existing Legacy Systems

GPS Processing

Public Cloud

2014-10-30T08:30-04:00 ESTF 2014 : ARIA-MH
Hybrid Cloud Auto-Scaling

• *Auto-scaling*: burst out to other cloud zones
Faceted Search of Data Products

- Facetted view of data products
 - Enable users to “drill down” into multi-dimensional facets of data
 - Sequentially apply constraints
- Collaboration with crowd-sourced social tagging
- Facets for reverse geocoding for all data products
- Interactive leaflets
- REST web service endpoint also in use
 - Exposes same faceted constraints
Empowering Users with Faceted Rules

HySDS Facet Search is a faceted search interface for GeoRegionQuery. The interface allows users to search for data using a variety of criteria, including user tags, system version, and dataset. The screenshot shows a search for data with specific latitude and longitude ranges.
Geospatial Faceted Search

- Spatial extents (polygon, bbox, circle, and reverse-geocoded region name)
- Temporal extents
- **Faceting with ESDIS GIBS** near real-time (NRT) map view overlays
Facet Search with ESDIS GIBS
Near Real-Time Basemaps
Faceted Resource Management

- Facetted real-time view of distributed cloud compute jobs
 - Status
 - VM types
 - Compute nodes
 - Cloud zones
 - Hardware resource utilization
 - By hardware specs
 - DAV view
 - Etc.
Dashboard for Real-Time Faceted Metrics for Distributed Hybrid Cloud Data System

- Dashboard for **faceted metrics**
- Real-time metrics of distributed hybrid cloud computing infrastructure
- Integrated metrics across on-premise and off-site cloud compute nodes
Computing Resources Used

- **On-Premise Cloud Computing Resources**
 - Eucalyptus Availability Zone at JPL OCIO 600 Data Center
 - Eucalyptus Availability Zone at JPL OCIO 230 Data Center
 - Eucalyptus Availability Zone at JPL 202 Data Center
 - Nebula cloud compute nodes at JPL
 - OpenStack Zone at JPL OCIO 600 Data Center

- **Public Cloud Computing Resources**
 - Amazon AWS – GovCloud US
 - Consolidated costing
 - JPL network IP address space in GovCloud instances

- **Auto-scaling of computing resources**
 - Able to *burst* out to AWS when compute demand exceeds at of on-premise resources
 - Seamless transitioning between on-premise and public compute nodes
 - “*keep up*” processing of near real-time data stream
 - “*bulk*” processing
Estimated NISAR Daily Scene Data Volume

<table>
<thead>
<tr>
<th>Processors</th>
<th>Input Data</th>
<th>Input</th>
<th>Intermediate</th>
<th>Output</th>
<th>To DAAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOA (catalog incoming raw data)</td>
<td>from s/c</td>
<td>15</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>L0B</td>
<td>LOA</td>
<td>15</td>
<td>17.25</td>
<td>17.25</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC</td>
<td>L0B</td>
<td>17.25</td>
<td></td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>MLC</td>
<td>SLC</td>
<td>40</td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>MLD Browse</td>
<td>MLC</td>
<td>2.5</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>161.5</td>
<td>161.5</td>
</tr>
<tr>
<td>L2 (all modes)</td>
<td>pair L0B</td>
<td>34.5</td>
<td></td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>SLC pairs, internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interferogram</td>
<td></td>
<td>40</td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pwr Images (Mst/Slv)</td>
<td></td>
<td>40</td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Coherence</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Unwrapped itfm (desired)</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Geocoded itfm</td>
<td></td>
<td>40</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Geocoded Coherence</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Geocoded Amplitude</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Geocoded Unwrapped itfm (desired)</td>
<td></td>
<td>20</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td>200</td>
</tr>
<tr>
<td>L2 Biosphere (Quad)</td>
<td>L0B</td>
<td>13.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC, internal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoke's matrix</td>
<td></td>
<td>23</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Polarimetric Coherence (desired)</td>
<td></td>
<td>23</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Geocoded Stoke's matrix</td>
<td></td>
<td>23</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Geocoded Polarimetric Coherence (desired)</td>
<td></td>
<td>23</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>510.75</td>
<td>424.75</td>
</tr>
</tbody>
</table>

Assumption: 240x240 km data takes 15 GB/scene or 200 scenes/day and scale all numbers proportionally from daily numbers.
Big Data Handling

- 3TB/day L0A from ground data system
 - Nominally 200 scenes/day @ 15GB/scene (240kmx240lm)

- 85TB/day derived data products (L0A to L2 interferograms) to DAAC. (~31 PB/year)

- Estimates of sustained ~1GB/sec data transfer from SDS to DAAC

- These are upper-bound estimates
 - NISAR L-band uses lower resolution (10m) as compared to existing higher-resolution CSK processing (3m)
 - Estimates are for storage in historic raw (e.g. BIP, BIL, BSQ) format
 - Use of HDF5 with chunked compression will reduce volume requirements

- Handling NISAR scenes
 - New ISCE processing code needs to developed.
 - Currently no concrete ISCE estimates on L0A to L2 processing time of NISAR 240km x 240km data takes.
 - 240km x 240km, 10m resolution
 - Phase unwrapping expected to be less of an issue as NISAR L-band has less decorrelation

- ARIA-MH’s CSK processing as reference
 - CSK’s use of HDF5 saw 3-4X in size reduction from raw storage. Compression ratio is also scene-dependent.
 - CSK scene processing from L0A to L2 unwrapped interferogram
 - Under 1-hour on 8-core compute nodes for 40km x 100km, 3m resolution. ~4 scene swath with 5-% overlap.

- New architectures needed to support data handling and throughput
 - SDS processing at JPL on-premise
 - Bottlenecks with data transfer out to DAAC
 - SDS processing at DAAC on-premise
 - NASA center politics and policy updates needed
 - SDS processing at public cloud
 - Hybrid cloud: on-premise and public cloud for processing and data storage
AIST Impacts to NISAR and SWOT

• AIST2011 funds ARIA-MH
• Developed NASA’s first hybrid-cloud computing science data system (HySDS)
 – Elastic InSAR processing
 – Elastic data storage
 • Public cloud object store costs still an issue
 • On-premise cloud storage options
 – Process migration (moving processing closer to large data)
 – Multi-dimensional faceted browse
 • For data products
 • For situational awareness of science data system
 • Faceted user rules for conditional monitoring and processing
 • Collaboration
• Hybrid-cloud computing science data system architecture (HySDS) developed for ARIA-MH being assessed for reuse for NISAR and SWOT
 – HySDS can scale up to NISAR and SWOT needs
 – HySDS enables SDS architectures to process Big Data volumes on-premise, in public cloud, and at DAACs to minimize data movement.
Big Data Analytics Needs

• Real End-User Needs
• Machine tags
 – Production-system auto-generated machine tags
• User-based social tagging
 – Social tagging by users
• Quality Assessment
 – Patterns of data from tagging
• Analysis
 – Improve understand through QA and tagging
• Need for Big Data Analytics
 – Too much data to manually tag
 – Automating large-scale analytics
 – Improve quality issues with the high-volume interferograms such as unwrapping problems, mis-registration, erroneous coherence, atmospheric noise and/or ionospheric artifacts.
Infusion Points

- NASA Infusion – Advanced Rapid Imaging & Analysis for Monitoring Hazards (ARIA-MH)
- AIST-2011
- Hybrid Cloud Science Data System – Integrative Discovery of Earth & Climate Data
- ESD – Cross-agency data discovery and access – Collaborative Climate Model and Observational Data Services (CCMODS)
- ACCESS-2011
- Reuse of discovery, access, and resource management – Tracking Production Legacy of Multi-Sensor Merged Climate Data Records
- ACCESS-2009
- Reuse of discovery, access, and provenance – Assessment of high-performance data movement in hybrid cloud for handling Big Data
- ESDIS
- Cloud storage for Big Data – A Multi-Sensor Water Vapor, Temperature and Cloud Climate Data Record
- MEaSUREs
- Reuse of HySDS for MEaSUREs

- Planned External Infusions
 - A Multi-Sensor Water Vapor, Temperature and Cloud Climate Data Record
 - MEaSUREs
 - Reuse of HySDS for MEaSUREs

- Planned External Infusions
 - Italian Space Agency (ASI)
 - USGS Hawaiian Volcano Observatory (HVO)
Summary

• The global coverage offered by satellite-based SAR missions, and rapidly expanding GPS networks can provide orders of magnitude more observations and improve hazard response
 – ...if we have a data system that can efficiently monitor and analyze the voluminous data, and provide users the tools to access data products.
• Hybrid cloud may be more effective for these needs
 – Do “keep up” processing on-premise
 – Off-site elasticity (bursting) for bulk processing
• Hybrid cloud computing may be a more effective approach to addressing lower latency and Big Data volume processing needs
• Big Data Analytics needed to improve quality of data products and processing algorithms
• PB-scale data volumes in cloud computing and storage significant enough to affect architectural design of data system
• Faceted browse of data system and data products improve understanding
• Real-time dashboards for “situational awareness”
• Monitoring
 – events for automatic processing
 – data products for custom actions
• AIST-funded HySDS
 – Already infused into ACCESS, MEaSUREs, and GCIS data systems
 – Will be infused into USGS and ASI
 – Being assessed for NISAR and SWOT science data systems