S

Empowering Cloud-Resolving Models Through
GPU and Asynchronous 1/0

The 2014 Earth Science Technology Forum (ESTF2014)

Wei-Kuo TAO (PI)
Thomas L. Clune (Co-PI)
Shujia Zhou (Co-PI)
Toshihisa Matsui (Co-I)
Xiaowen Li (Co-I)
Xiping Zeng (Co-I)

e
€arth Science Technology Office

Background

eeeeeeeeeeeeeeeeeeeeeeeee i

ice

NASA Cloud Resolving Models

Recently, a multi-scale modeling system with unified physics
was developed at NASA Goddard. It consists of (1) the
Goddard Cumulus Ensemble model (GCE), a cloud-resolving fVGCM
model (CRM), (2) the NASA unified Weather Research and
Forecasting Model (WRF), a region-scale model, and (3) the
coupled fvGCM-GCE, the GCE coupled to a general
circulation model (or GCM known as the Goddard Multi-
scale Modeling Framework or MMF). The same cloud
microphysical processes, long- and short-wave radiative transfer
and land-surface processes are applied in all of the models to
study explicit cloud-radiation and cloud-surface interactive
processes in this multi-scale modeling system. This modeling

Initial Condition

system has been coupled with a multi-satellite simulator for
comparison and validation with NASA high-resolution satellite GCE MOdel WRF
data. The left figure shows the multi-scale modeling system with
unified physics. = The GCE and WRF share the same A -
microphysical and radiative transfer processes (including the =
cloud-interaction) and land information system (LIS). The same 2.
GCE physics will also be utilized in the Goddard MME. %

&
The idea to have a multi-scale modeling system with unified LIS %
physics is to be able to propagate improvements made to a GSE
physical process in one component into other components
smoothly and efficiently. Microphysics

Radiation

MMEF: Multi-Scale Modeling Framework
GCE: Goddard Cumulus Ensemble Model

WRF: Weather Research Forecast Tao, W.-K., D. Anderson, J. Chern, J. Entin, A. Hou, P. Houser, R. Kakar, S.
LIS: Land Information System Lang, W. Lau, C. Peters-Lidard, X. Li, T. Matsui, M. Rienecker, M. R.
GOCART: Goddard Chemistry Aerosol Schoeberl B.-W. Shen, J.-J. Shi, and X. Zeng, 2009: Goddard Multi-Scale

Modeling Systems with Unified Physics, Annales Geophysics, 27, 3055-3064.@"5779

Science Technology Office

Radiation and Transport Model

CLOUD MICROPHYSICS IN EARTH SYSTEM SCIENCE

) Satellite S i
Airborne ‘ Remote Sensing Radla.tive
Remote Sensing T Forcing
Ground-Based \,wf\w-\ N\V,\/ Air
Remote Sensing > BT g g P \‘:} / Chemistry
s 74 4 2 5 sy
{ Cloud *’féﬁfi
Passive Sensing g __ _ (<Microphysics - Atmos
(Microwave, IR, Vis) 7= AT

Electrification

Active Sensing

(Radar, Lidar) /

, Cloud
\ \ Parameterizations
Energy

Land/Ocean -
Cycle

Atmos Interactions
{many scales) Hydrologic

Cycle

Weather and climate models are using explicit microphysics schemes developed by
CRM for their higher resolution forecast/simulation

CESTO

€arth Science Technology Office

@ CPU for radiation and microphysics

Total Total
CPU CPU Radiation | Microphysics | Dynamics
hours number
Bulk (radiation 198 64 25.1% 10.0% 63.9%
every 10 steps)
Bulk (radiation 658 64 77.2% 3.0% 19.5%
every step)
Bin (radiation | 44 697 1024 0.12% 45.8% 54.1%
every 10 step)
Bin (radiation | 47138 1024 1.16% 45.8% 53.0%
every step)

CPU times for 3D GCE simulations for a convective case on the NASA Pleiades
computer. The domain size 1s 256x256x41, total integration time 1s 24 hours with 3
seconds time step. Dynamics includes the advection of all variables as well as the
pressure solver.

Bin scheme cost about x 326 CPU time compared with 1-M bulk run

@ [/O data requirements Microphysical Scheme

Estimations based on the domain size of 256 x 256 x 41 grid points, for a total 5-
days integration time, using FORTRAN binary format

single current output | current data desired desired data
output frequency amount output amount
frequency

Dynamics 0.12G 144G 5 min 0.17T
Bulk microphysics (.15 G 1 hr 18.0 G 5 min 022T
Bin microphysics 54G 1 hr 648 G 5 min 7.78 T

Statistics 04G simulation period 04G simulation period 04G
Total 118G - 680.8G - 8.17T

Goddard MMF: 5 TBs for 1 year run with hourly CRM output and 45%
wall time for output

€arth Science Technology Office

@ Project Goals

* Improve NASA cloud resolving models’ computational
performance by porting computationally-intensive

components (Radiation and Microphysics) to Graphics
Processing Units (GPUs)

* Develop an Asynchronous 1/0 tool to offload output
data from compute node to reduce the 1dle time of
computing processors

* Develop a data compression mechanism to further
empower the Asynchronous 1/O tool

G570

Rationale for Reengineering:
Preparation for Future Supercomputers

* Essentially all next-generation supercomputers are using
HW accelerators (using SIMD or Vector processors) to
reduce energy consumption

— Several with NVIDIA GPUs and Intel Xeon Phi in Top500
Supercomputers as of November 2013

* Tianhe-2 (No. 1) using Intel Xeon Phi
e ORNL Titan (No. 2) using GPU K20x

— NASA NCCS and NAS have installed MIC 1n its .
supercomputer and are expected to make further investments in
upcoming procurements.

* NASA NCCS has encountered the constraint of energy
consumption

— Part of intel processors run in a low energy consumption mode

s
€arth Science Technology Office

S

NVIDIA Graphics Processing Units

(GPUs)

Fermi

— Kepler

@
o
]

=

2

=
8

x

GigaThead

Strategy for Reengineering GCE/Nu-WREF:

Current Accelerator Technologies

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion
(execution units), and light blue portions (register file and L1 cache).

—
O
o
-
=
O
o)
=<
=)
w
o
w
<
W

Intel Many Integrated Core

Architecture (MIC)

— Khnights Corner with more than 50

cores per chip

VECTOR VECTOR VECTOR
IA CORE IA CORE L IA CORE

INTERPROCESSOR NETWORK

COHERENT
CACHE CACHE i CACHE

COHERENT COHERENT

COHERENT COHERENT

INTERPROCESSOR NETWORK

VECTOR VECTOR VECTOR
1A CORE IA CORE S IA CORE

For GPUs some real-world applications have achieved good performance with
considerable code changes. For MIC, it is reported for relative easier adoption.
However, considerable code changes are still required to achieve good performance.

COHERENT
CACHE CACHE CACHE

VECTOR
IA CORE

COHERENT
CACHE

COHERENT
CACHE

VECTOR
IA CORE

MEMORY and I/0 INTERFACES

CESTO

€arth Science Technology Office

Porting an application to GPU with optimal performance involves three major memory
systems: CPU host memory, GPU global device memory, and GPU local shared memory

SM SM SM
Host
Memory ' 4
_DMA GPU Global Device Memory,
_/‘ PCI ' Texture Memory, Constant Memory

LT

Major components involved in GPU computing. Data transfers between CPU’s host
memory and GPU’s global device memory through Direct-Memory Access (DMA). Each
stream processor (sp) accesses data from local shared memory (SM), global device memory,
texture memory, and constant memory. A special function unit (transcendental: sin, pow,

etc.) 1s represented with sf.

cccccccccccccccccccccccccccc

@ Strategy for Reengineering GCE/NuWRF
Current Programming Paradigms

* NVIDIA CUDA

— Many-thread and multiple-memory programming model
* The more performance, the more code changing

* OpenACC

— Developed to ease programming for accelerators in a similar style to OpenMP

— The current compiler 1.x is not mature. The 2.0 version has been released
lately.

* We are using Portland Group (PGI) CUDA Fortran to improve the
performance

— Have limited options in reducing copy-in-and-out costs
» Use code reorganization to reduce the costs in this project

cccccccccccccccccccccccccccc

S

Strategy for Reengineering GCE/NU-WRF:
Current Solution

* Reduce copy-in-and-out cost

— Put reusable variables onto GPU through Fortran CUDA
module

— Fuse 1dentical codes to reduce temporary variables
* Soluv() and Solir()

— Move the column index out of kernels and into drivers
* More code changes

cccccccccccccccccccccccccccc

Port Radiation, One-moment
Physics, Two-moment Physics

cccccccccccccccccccccccccccc

-]

Solar Radiation: Deledd() Performance Comparison

Deledd() is compute-intensive as well as repeatedly called

Deledd() takes ~26.9% of radiation, which is 5.5 times more
than Cldflx()
— Cldflx() takes ~5.5% of radiation

For the configuration of 128x128 columns, performance
comparison against one CPU core

Time (micro Speedup
second)

CPU 68850
OpenACC with IO 14440 4.77X
CUDA Fortran with 10 11898 5.78X
CUDA Fortran without 10 220 321X

142X (U. Wisconsin)

€arth Science Technology Office

S

Performance: K20 vs Fermi

GCE configuration: 128 X 128 Columns, GPU Thread configuration: 32 X 4

_ K20: CPU/GPU Fermi: CPU/GPU K20 GPU/Fermi GPU

Soluv() 19,406,336/ 2,450,730 = 20,091,133 /2,717,804 2,717,804 /

(Micro second) 7.92 =7.39 2,450,730.0= 1.11
Solir() 71,337,870/ 7,859,607 74,055,186 /9,112,408 = 9,117,496/7,859,607
(Micro second) = 9.08 8.13 =1.16

» K20 is faster than Fermi

= 1027 microsecond for deleddgpu() without copy into and out of GPU
= 1858 microsecond for an array, tst (128x128, 43), copy out of GPU with pitch option
= 7579 microsecond for tst copy out of GPU with PGI Fortran * = “option

» Copy-in and -out is the performance bottleneck

€arth Science Technology Office

S

Long Wave Radiation

* Effort

— Tablup() is the most compute intensive one. It uses look-up tables.

— For Tablup(), used shared memory, constant memory, copied the
actually-used table. However, performance does not improvement since
the time for copy-into-and-out-of-GPU is dominant compared to
computational time

* Approach

— Rewrite the codes and port the whole code into GPU to reduce copy-in-
and-out time
* Pull the do loop for column out of kernels

— Fit tables in formula
* Too complicated to fit in a reasonable expression

— Pre-calculate values from tablup() and store them into arrays
* Not portable

46 CESTO

€arth Science Technology Office

S

Optimizing One Moment Microphysics Code for GPU

* Code improvements for GPU

— Merge many loops into one
— Change arrays into scalars
— Modularlize the code

* Accuracy comparison in CPU

— Same in binary outputs between the old and new codes

* Comparison 1n computational efficiency

— Original code running: 30.52 s
— New code running: 22.46 s
— Performance improvement: 35% (in CPU)

€arth Science Technology Office

Porting One-Moment Microphysics Code into GPU

 Difference in code structure

'ii‘(tair.lt.tO) then

if(tair(i,j).It.t0) then
yl=max(min(tairc, -1.), -31.)

y1(i,j)=max(min(tairc(i,j), -1.), -31.)
it(i,j)=int(abs(y1(i,j)))

y1(i,j)=rn12a(it(i,j))

y2(i,j)=rn12b(it(i,j))

y3(i,j)=rn13(it(i,j))
psfw(i,j)=max(d2t*y1(i,j)*(y2(i,j)+r12r*qc(i,j)) *qili,j),0.0)
psfi(i,j)=y3(i,j)*ai(i,j)

if(ilang.eq.-1)then Ixp
tmp=BergCon1(it(i,j))*qi(i,j)
+BergCon2(it(i,j))*rrho(k)*rn25*exp(beta*(tair(i,j)-t0))
psfi(i,j)=max(tmp*d2t,0.0)

endif

Original code in arrays

Performance in GPU
— New code in CPU:
- Final code in GPU:
— Efficiency of GPU:

it=int(abs(y1))

yl=rn12a(it)

y2=rn12b(it)

y3=rn13(it)

psfw=max(d2t*y1*(y2+r12r*qc)*qi,0.0)

psfi=y3*qi

tmp=BergConl(it)*qi &
+BergCon2(it)*rr0*rn25*exp(beta*(tair-t0))

1 +BergCon2(it)*rrho(k)*rn25*exp(beta*(tair-t0))
psfi=max(tmp*d2t,0.0)

endif

Final code in scalars

22.46s

595s
3.8x Included I/O between CPU and GPU

5.1x Compared to the original code

CESTO

€arth Science Technology Office

S

Porting Two-Moment Microphysics Code into GPU

* Profiled Morrison 2-moment scheme

* Identified the most compute-intensive
component, sedimentation, which 1s 30% of
total microphysics computing time

* Reengineered the code and porting 1t to GPU

CESTO
€arth Science Technology Office

S

Baseline Test of Code Merging

Merged the new GPU radiation code into the baseline test
system

Merging and testing the new GPU one-moment microphysics
code into the test system

Merged the new CPU two-momentum microphysics code into
the test system

€arth Science Technology Office

Lesson Learnt

Data transfer speed between CPU and GPU 1s the main
performance bottleneck

— Code reengineering 1s necessary to reduce unnecessary data transfer

OpenACC 1s easy to use, however, its performance 1s not
appealing.

CUDA Fortran offers better performance, however, it requires
more code reengineering and is challenging to debug

€arth Science Technology Office

Summary: evolving to next-gen HPC

Accelerators show promise but too little return on current hardware

Prepping applications for next gen. hardware underway
— Increasing concurrency
— Increasing vectorization
— Decreasing memory footprint
» More attention needs to be paid to fine-grained parallelism going
forward
 WRF is heading in the wrong direction on memory use but no clear
evidence it's hurting performance ... yet

Recommend

Further study
Test for performance and resource consumption
Consider requirements for software redesign for scalability

AN ¢

10

Courtesy of John Michalakes, NOAA/EMC

Next-Generation GPU:
CPU-GPU Unified Memory and NVLink

UNIFIED MEMORY
DRAMATICALLY LOWER DEVELOPER EFFORT

NVLink: 80 GB/s

Extend Asynchronous I/0

53/77 ESTO

ccccccccccccccccccccccccc i

ice

S

Current 10 Architecture

* IO performs in a root

Compute nodes 0 process. It needs two
operations:
p3 — Gather distributed data
arrays to root process,
p2 — Write them out to disk at
root process
Pl * Issues
— @Gather can be time
PO consuming
— Memory size 1s limited in a
File system, disk system single node

Total 10 time = gather() + write ()

€arth Science Technology Office

S

Compute nodes Send/Recv 10 nodes
3 | -] P7 =
2 L -] P
ol | ->] P>
pO i - - p4 -

Current Parallel AsynclO Implementation

Total 10 time = send()
Note: (1) For nonbloack send, no need for receive() to
complete, (2) no need for write() to complete

MPI1 10

€arth Science Technology Office

Parallel AsynclO Performance

* Output real arrays

— Test at NCCS Discover

* Intel Westere node (2
hex-core processors per
node)

* One MPI process per
node

— Data configuration

* One array size on each
process: 32%32*40

* Do-Loop times: 1600
* With parallel AsynclO,
IO time depends on the
interconnection speed
rather than the number
of processes

Time (Second) vs. Number of
Compute Process

e=jm»Time

Data Size (Byte) vs. Number of

1.00E+10
8.00E+09
6.00E+09
4.00E+09
2.00E+09
0.00E+00

Compute Process

e=(m»Data Size

S

Summary

* Accomplished work

— Explored two GPU porting approaches: OpenACC and CUDA
Fortran. We chose CUDA Fortran due to its good performance.

However, its coding and validation are challenging.
— Ported radiation and integrated it into test baseline.

— One-moment physics has been extensively reengineered and
ported and 1s being validated

— Two-moment physics has been reengineered and is being ported.

— AsynclO has been extended with parallel 10 capability

CESTO
€arth Science Technology Office

S

Summary

* Work to be accomplished

— Port microphysics (one-moment and two-moment) and
integrate them into GCE and WRF along with radiation.

— Enhance AsynclO with NetCDF and HDF output support as
well as compression and integrate it into GCE and MMF

€arth Science Technology Office

backup

CPU-GPU System Diagram

CPU4

CPU3

Ewwwww Ewwwww — LEEEEEE LEEEEEE

CPU2

CPU1

!

oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo

\

oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

GPU4

GPU3

GPU2

GPU1

] CPU core

GPU core

!

$w=— |B network

PClI card

CPU-GPU Implementation Approach

For GPU, use CUDA Fortran
— Plan to use OpenACC again if its performance is sufficiently
good
Between GPU and CPU, use CUDA API to copy data in
and out
— Currently use one CPU core to communicate with one GPU
e CUDA4.0

— Plan to use all cores in a CPU to communicate with one
GPU
« CUDAG6.0

Among CPU cores, use MPI to communicate

Updated NVIDIA GPU Roadmap

* Roadmap released on March 17, 2014

— Unified Memory: This will make building applications that take
advantage of what both GPUs and CPUs can do quicker and easier by
allowing the CPU to access the GPU’s memory, and the GPU to access
the CPU’s memory, so developers don’t have to allocate resources
between the two.

— NVLink: Today’s computers are constrained by the speed at which data
can move between the CPU and GPU. NVLink puts a fatter pipe
between the CPU and GPU, allowing data to flow at more than 80GB
per second, compared to the 16GB per second available now

— Pascal Module: NVIDIA has designed a module to house Pascal GPUs
with NVLink. Pascal 1s due in 2016

* Impact

— The performance bottleneck and coding/debugging issue related to
copy in/out between CPU and GPU will disappear and acceleration
with GPU will be more evident.

47

Solar Radiation:
Compare CPU and GPU Results

For example, in solir() routine, all-sky flux (downward minus
upward), flx, 1s

0.7947214478638445 without GPU
0.7949332959524538 with GPU

cccccccccccccccccccccccccccc

48

Solar Radiation: GPU Code Example

GPU kernel driver

integer devnum

integer dev_pitch

call wrap_cudaGetDevice(devnum)

call wrap_cudaSetupMemoryUsage(devnum)
dev_pitch =64

linput
I'size mx np
call wrap_cudaMallocPitch(dev_tautob, dev_pitch, m, np)

! output
call wrap_cudaMallocPitch(dev_rrt, dev_pitch, m, np)

l--—--memcpy 2D arrays

I sizemxnp
call wrap_cudaMemcpy2DHostToDevice(dev_tautob, dev_pitch, tautob, &
m, m, np.)

call deleddKernel<<<dimGrid,dimBlock>>>(m, dev_pitch, np, &
dev_cosz, &
dev_tautob, dev_ssatob, dev_asytob, &
dev_rrt, dev_ttt, dev_tdt)

I sizemxnp
call wrap_cudaMemcpy2DDeviceToHost(rrt, m, dev_rrt, dev_pitch, &
m, np)

I sizemxnp
call wrap_cudaFree(dev_tautob, dev_pitch*np*8)

GPU kernel

attributes(global) subroutine deleddKernel(m, dev_pitch, np, &
dev_czal,&

dev_taul, dev_sscl, dev_g01,&

dev_rrl, dev_tt1, dev_td1)

l--——-input parameters
integer, value :: m, dev_pitch,np
real :: dev_czal(dev_pitch) !1D

I input that are 2D module variables
real :: dev_taul(dev_pitch,np.)

lomeee output parameters
real :: dev_rrl(dev_pitch,np.)

€arth Science Technology Office

Simulation Days per Calendar Day

01 r

GCE Scalability with Bin Physics and Parallel 10

Scalability of GCE (r508) using spectral bin microphysics on a 1028x1028x106 domain at 250m resolution

T

T T

As the number of
processes increases,
the domain size
decreases and the
percentage of
communication cost
(halo update) increase.
Consequently,
scalability is not linear.
Without parallel 10,
1028x1028x46 run fails

512

1
1024

1 1 1
2048 4096 8192
Process count

Simulations were carried out in NASA NAS Pleiades. Use
ivybridge nodes with 16 ranks per node evenly
distributed on the two sockets

GCE Scalability with Bulk (One-moment) Physics
and without 10

] As the number of processes
;] increases, the domain size decreases
and the percentage of
communication cost (halo update)
increase. Consequently, scalability is
not linear. However, when the
domain size is fixed, it is close to
liner. For example, the run with
2048x2048x104 with 4096 processes
] takes the similar walk clock time to
s ﬁ 4096x4096x104 with 1024

] processes.

Wallclock Time (s)

procesorumber Simulations were carried out in NASA NAS
Pleiades. Westere processors are used.

GCE Scalability with Bin Phy

Metric: TIME [wallTime_512p.1410915.xml - Mean
Value: Exclusive B WallTime.1024p.1411496.xml - Mean

Units: seconds

9194.188
5901751 (64.10%)]
2863.62 (31.146%) [
1539.468 (16.744%) (=]

7588.075
3817.104 (50.304%) [—
2159.537 (28.46%)]

1038.75 (13.689%) [

7281.759
3685.228 (50.609%) [——
1807.282 (24.819%) (]
747.186 (10.261%) [l

6622.74
3247.549 (49.036%) [—
1516.809 (22.903%) [

559.667 (8.451%) [

6024.993
1247.727 (20.709%) [
816.679 (13.555%) [
752.748 (12.494%) [l
5230.098

| ——
2441.247 (46.677%) | —
1289.366 (24.653%) [l
633.606 (12.115%) [

4360443]
2331116 (53.35%) | —
1274.436 (29.167%) [
729.556 (16.697%) [l

3529.099
648.582 (18.378%) [l
632.254 (17.915%) [
733.09 (20.773%) [

3310.341
1496.476 (45.206%) | —
733.995 (22.173%)]
366.905 (11.084%) W

2728.463
845.751 (30.997%) [l
555.221(20.349%) [
522.901 (19.165%) [

27004
1362.079 (50.44%) =
909.373 (33.676%) [
481.685 (17.838%) [l

2230.537]
1119.876 (50.207%) [l
558.767 (25.051%) [
271.186 (12.158%) W

1997.237]
967.157 (48.425%) [l
706.239 (35.361%) [

367.983 (18.425%) W

1652.63
181.576 (10.987%) |
161.105 (9.748%) [
156.769 (9.486%) B

1020.652 1
651.276 (63.81%) [l
243.385 (23.846%) O

83.126 (8.144%) |

825.064 [
416.805 (50.518%)
199.823 (24.219%) [
100.087 (12.131%) |

778328 [

[wallTime.2048p.1418922.xml - Mean
[] WallTime_4096p.1421318.xml - Mean

MPI_Wait() <= RMP_UPDATEHALO [{rmp_updatehalo.pp.for} {3,18}] <= BNDOP [{bndop.pp.

ADVECT [{advect.pp.for} {7,18}] <= ADVECT_BIN [{advect_bin.pp.for} {6,18}] <= GCE [{gcen

FADVUW [{fadvuw.pp.for} {6,18}] <= ADVECTN [{advectn.pp.for} {5,18}] <= ADVECT [{advec

FADV [{fadv.pp.for} {7,18}] <= ADVECTN [{advectn.pp.for}{5,18}] <= ADVECT [{advect.pp.ft

MPI_Wait() <= RMP_UPDATEHALO [{rmp_updatehalo.pp.for} {3,18}] <= BNDOP [{bndop.pp.

Loop: HUCM [thucm.pp.for} {1190,11}-{1912,16}] <= HUCM [{hucm.pp.for} {4,20}] <= GCE [

ADVECTN [{advectn.pp.for} {5,18}] <= ADVECT [{advect.pp.for} {7,18}] <= ADVECT_BIN [{ad

MPI_Allreduce() <= RMP_SUMQUICK [{rmp_sumquick.pp.for} {3,18}] <= ADVECT [{advect.p

ADVECT_BIN [fadvect_bin.pp.for} {6,18}] <= GCE [{gcempi.pp.f90} {10,18}] <= GCEMAIN [{g

MPI_Wait() <= RMP_UPDATEHALO [{rmp_updatehalo.pp.for} {3,18}] <= BNDOP [{bndop.pp.

RMP_UPDATEHALO [{rmp_updatehalo.pp.for} {3,18}] <= BNDOP [{bndop.pp.for} {6,18}] <=

ONECOND [{helek02.pp.for} {3,20}] <= Loop: HUCM [thucm.pp.for} {1190,11}-{1912,16}] <=

RMP_UPDATEHALO [{rmp_updatehalo.pp.for} {3,18}] <= BNDOP [{bndop.pp.for} {6,18}] <=

MPI_Allreduce() <= ADVECT_BIN [fadvect_bin.pp.for} {6,18}] <= GCE [{gcempi.pp.f90} {10,1

FADVECT [{fadvect.pp.for} {3,18}] <= ADVECT [fadvect.pp.for} {7,18}] <= ADVECT_BIN [{ad\

MELTINGMOD::MELTINGCGS [{meltingCGS.pp.F90} {31,12}] <= Loop: HUCM [thucm.pp.for} {

sics and Parallel |10

This perform profile
shows that halo update
and advection are two
major time consumers.

@/ Spectral Bin Microphysical Scheme in GPU

Preliminary Estimations of Computing time and GPU Efficiency

(based on a 24-hour model run)

Main % of total bin | GPU Efficiency
processeses in microphysics Estimation
bin time
microphysics
Diffusion* 4799 28.8 excellent
Coagulation™ 4837 29.1 challenging
Freezing/Melting 1355 8.2 excellent

* Need to increase calling frequencies because cloud/precipitation is fast process
* Diffusion needs up to x10 increase in calling frequency
* Coagulation needs x2 increase in calling frequency

€arth Science Technology Office

