1. Scope of Program

1.1 Introduction

NASA’s Earth Science Technology Office (ESTO) manages the development of a range of advanced technologies to meet future Earth science measurements and operational requirements. ESTO technology investments attempt to address the full science measurement process: from instruments needed to make observations, to data systems and information products that make those observations useful.

The Instrument Incubator Program (IIP) seeks proposals for technology development activities leading to new system and subsystem level airborne and space-based measurement techniques to be developed in support of the Science Mission Directorate’s (SMD) Earth Science Division. The objectives of the IIP are to research, develop and, demonstrate new measurement technologies that:

- Reduce the risk, cost, size, volume, mass, and development time of Earth observing instruments, and
- Enable new Earth observation measurements.

The IIP is designed to reduce the risk of new, innovative instrument systems so that they can be successfully used in future science missions to reduce overall development time. Figure 1 shows the idealized relationship between the IIP and development of future missions.

Figure 1. Idealized Relationship between IIP and Future Flight Missions
Critical to this design is the relationship between the various technology development programs that the SMD has available to enable missions. For technology infusion into NASA science missions to take place in a timely and efficient manner, appropriate funding must be applied at each stage or readiness level associated with the development of key and enabling technologies. Technology development activities are planned and initiated so that major technological risk is retired prior to a science solicitation via an Announcement of Opportunity (AO) or Request for Proposal (RFP). A focused, science-driven approach with direct traceability to planned measurements can effectively harness advanced instrument technology capabilities and leverage developments in technology programs funded by NASA, other Government agencies, private organizations, and academic institutions. Within this development environment, the IIP can rely upon the NASA Advanced Component Technology (ACT) Program for advanced instrument components and subsystems and other NASA programs for space flight validation.

NASA’s Technology Readiness Level (TRL) is an ordinal classification system that allows comparison of the degree of maturity of technologies under development. TRLs range from 1 to 9 (see Section 2.1.2.2, Table 1 for TRL definitions), and these indicate completion of increasingly demanding proof-of-performance criteria at various stages of a technology development. Figure 2 shows the progression of TRL goals for two ESTO programs, for flight validation, and for future science missions.

![Figure 2. TRL Ranges for Technology Development Programs and Science Missions](image)

1.2 Background and Solicitation Justification

A series of future Earth Science mission concepts have been recommended by the National Research Council (NRC) in response to a request from NASA’s Office of Earth Science, the National Oceanic and Atmospheric Administration (NOAA) National Environment Satellite Data and Information Services, and the U.S. Geological Survey (USGS) Geography Division. The full NRC report entitled, “Earth Science and Applications from Space: National Imperatives
New technology will play a key role in enabling many of the NRC recommended measurements and helping to reduce the cost of other measurements. This IIP solicitation will facilitate the implementation of the recommended measurements by carefully choosing where to invest in future instrumentation to get the greatest benefit from NASA’s technology development funds.

1.3 Proposal Research Topics

1.3.1 Goals of the Instrument Incubator Program

This solicitation covers instrument design, breadboard, prototype, and engineering model construction, laboratory demonstrations, and field demonstrations for innovative measurement techniques that have the highest potential to meet the objectives of the IIP and the measurement capability requirements for the NASA Earth Science community.

The IIP is envisioned to be flexible enough to accept instrument and measurement concepts at various stages of maturity (see Figure 3), and through appropriate risk reduction activities advance the system's technology readiness level to that necessary to compete successfully in future science solicitations or space flight demonstrations. The proposer must define the starting point for the instrument or measurement technique and the exit or success criteria for the proposed activity.

Figure 3. Entry and exit points defined by proposer
1.3.2 Proposal Research Topics

The NRC Decadal Survey recommends an integrated strategy for Earth science and applications from space. This IIP solicitation focuses on the instrumentation to make the science measurements that are described by the Decadal Survey. The measurements called out in the Decadal Survey mission concepts include such things as radiation balance; soil moisture; ice sheet height; surface deformation; vegetation structure; land surface composition; carbon dioxide column integrals; ocean, lake, and river water levels; atmospheric gas columns; ocean color; aerosol and cloud profiles; land surface topography, temperature and humidity sounding; gravity fields; snow accumulation; ozone and trace gas profiles; and tropospheric winds. This list is illustrative only – proposers should refer to the Decadal Survey itself for clarification of the exact measurements desired.

The measurements called for in the Decadal Survey have been assembled into a series of mission concepts divided into three timeframes or tiers. Proposers should carefully consider these timeframes in deciding what types of technology to propose for a given measurement. It may be more appropriate to propose more mature technologies for the earlier mission concepts and more challenging, lower TRL technologies for the later mission concepts. However, note that technology development must be included in the proposal, even for earlier missions, since the IIP is a technology development program.

Priority for selection will be given to those proposals that most clearly address the following focus areas:

1. (DS Tier I) Proposals for the development of instruments for SMAP and ICESat II missions are discouraged. Proposals related to CLARREO and DESDynI may be considered if the technology development approach is consistent with current planned implementation timeline of these two missions.
2. (DS Tier II) Emphasis for selection will be placed on the development and maturation of instruments that can significantly reduce the cost by minimizing risk, cost, size, volume, mass, and development time to enable the Earth science measurements recommended in the mid-term Decadal Survey missions.
3. (DS Tier III) Proposals for the development of instruments that enable Earth science measurements of far-term Decadal Survey missions are also encouraged.
4. (Science Plan and Other) Support may also be provided for innovative instrument approaches that support compelling Earth Science measurements identified in the Decadal Survey or other key Earth Science documents.

Note that proposals for the development of airborne calibration and validation systems supporting the Decadal Survey missions’ priorities are allowed.

2. Programmatic Information

This solicitation provides additional details governing the proposed activities that supersede the general guidelines announced in the NASA Guidebook for Proposers and incorporated by
2.1 Proposal Content and Submission

2.1.1 Notice of Intent to Propose

A Notice of Intent (NOI) to propose is encouraged, but not required, for the submission of proposals to this solicitation. The information contained in the NOI is used to help expedite the proposal review activities and, therefore, is of considerable value to both NASA and the proposer. NOIs shall be submitted electronically via NASA Solicitation and Proposal Integrated Review and Evaluation System (NSPIRES) by the due date given in Section 3. Since NOIs submitted after the deadline may still be useful to NASA, late NOIs, as well as indications of intent NOT to propose on an earlier NOI submission, may be submitted by email to the point of contact for this solicitation (see Section 3).

2.1.2 Proposal Content

2.1.2.1 Proposal Summary

Each proposal shall include a proposal summary that describes the proposed work in no more than 300 words. The proposal summary shall include: (a) objectives and benefits; (b) an outline of the proposed work and methodology; (c) the period of performance; and (d) entry and planned exit TRL.

2.1.2.2 Scientific/Technical/Management Section

This section completely replaces Section 2.3.5 of the NASA Guidebook for Proposers. This section must include the following content information in subsections that use the same titles. Failure to provide any of this material may be cause for the proposal being judged as noncompliant and returned without further review. The Project Description shall be limited to 15 nonreduced, single-spaced typewritten pages. Standard proposal style formats shall be in accordance with Section 2.2 of the NASA Guidebook for Proposers. Proposals that exceed the 15-page limit will be truncated at 15 pages.

1. **Applicability to Earth Science Measurements** – Describe the benefits to future Earth Science missions that utilize the proposed technology. Proposers shall include a one-page relevancy scenario showing how the proposed technology contributes to one or more Earth Science measurements. Proposals that fail to include a relevancy scenario will be considered noncompliant and will be returned without review.

2. **Description of Proposed Technology** – Provide a description of the proposed new technology for an instrument system or subsystem. Describe the technical approach and include an operational concept for the proposed technology that shows how it
addresses Earth science needs. Discuss any possible benefits to other NASA Earth or Space Science activities or commercial benefits.

3. **Comparative Technology Assessment** – Describe the anticipated advantages of this technology compared to those currently in use - e.g., reduction of size, mass, power, volume or cost, improved performance, or enabling of a new capability not previously possible. Reference the current state of the art and relate it to the proposed work.

4. **TRL Assessment** – Proposers must define the starting point for the instrument technology or measurement technique and the exit or success criteria for the proposed activity. The TRL shall advance by at least one level during the period of performance of the activity. If proposed activity duration is for multiple years, advancement of one TRL per year is desirable.

For this solicitation, the entry TRL shall be between 3 and 5. Table 1 provides high-level definitions for instrument system technology TRLs. More detailed TRL definitions can be found at http://esto.nasa.gov/files/TRL.doc. The proposer shall identify the entry TRL, the planned exit TRL, and success criteria in their proposal. The proposer shall substantiate the entry TRL in the proposal. Proposals that fail to include and substantiate the entry TRL will be considered noncompliant and will be returned without review.

<table>
<thead>
<tr>
<th>TRL</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic principles observed and reported</td>
</tr>
<tr>
<td>2</td>
<td>Technology concept and/or application formulated</td>
</tr>
<tr>
<td>3</td>
<td>Analytical and experimental critical function and/or characteristic proof-of-concept</td>
</tr>
<tr>
<td>4</td>
<td>Component and/or breadboard validation in laboratory environment</td>
</tr>
<tr>
<td>5</td>
<td>Component and/or breadboard validation in relevant environment</td>
</tr>
<tr>
<td>6</td>
<td>System/subsystem model or prototyping demonstration in a operational environment</td>
</tr>
<tr>
<td>7</td>
<td>System prototyping demonstration in a operational environment</td>
</tr>
<tr>
<td>8</td>
<td>Actual system completed and "flight qualified" through test and demonstration</td>
</tr>
<tr>
<td>9</td>
<td>Actual system flight proven through successful mission operations</td>
</tr>
</tbody>
</table>

5. **Research Management Plan** – Proposer must provide a statement of work that concisely describes each task and milestone to be accomplished in the course of the
research and development. Define the success criteria associated with each task or milestone. Also include a schedule chart that identifies critical milestones. At least two milestones per twelve-month period must be defined.

Subcontracting portions of the research project is acceptable, but overall management and reporting are the responsibility of the proposing organization.

6. Personnel – Provide a list of key personnel and identify experience related to the proposed activity. Proposers should be sure to include science, technology development, and instrument development skills on the team. The key personnel list is included in the overall page count and must include, as a minimum, the Principal Investigator (PI). Optionally, one-page resumes for Key Personnel may be supplied; these resumes are not included in the overall page count.

7. Facilities and Equipment – Describe significant facilities and equipment required to complete the work. Before requesting funding to purchase a major item of capital equipment, the proposer should determine if sharing or loan of equipment already available within the proposing organization is a feasible alternative.

8. Special Matters – Proposers should include a brief description of the organization, its facilities, and previous work experience in the field of the proposal.

9. Quad Chart – Provide a summary chart (quad chart) that shall contain the following information:

- Upper Left Quadrant: “Description and Objectives”
- Lower Left Quadrant: “Approach” and “Co-Is/Partners”
- Upper Right Quadrant: A visual, graphic, or other pertinent information
- Lower Right Quadrant: “Milestone Schedule” and “Entry TRL.”

A template and example of the quad chart can be downloaded from http://esto.nasa.gov/files/EntryQuad_instructions_template.ppt. This quad chart is not included in the overall page count.

2.1.3 Proposal Submission

Proposals shall be submitted electronically via NSPIRES, as described in the NASA Guidebook for Proposers (see Chapter 3 for details). Proposals submitted after the due date will not be evaluated or selected.

2.2 Award Information

2.2.1 Funding

The Government’s obligation to make award(s) is contingent upon both the availability of appropriated funds from which payment can be made and the receipt of proposals that NASA
determines are acceptable for award under this solicitation. No additional funds beyond the
negotiated award value will be available. NASA does not allow for payment of profit or fee to
commercial firms under grant awards (see Section 2.2.3).

The funding available for this solicitation will limit the number and magnitude of the proposals
awarded. The ESTO expects that a total of 15 to 20 proposals will be selected and awards issued
with values not to exceed $1.5M per year per award.

Proposers are encouraged to offer cost sharing. If a cost sharing arrangement is proposed,
appropriate data rights that recognize the proposer’s contributions, as well as the Government’s
rights to access, will be negotiated prior to award.

2.2.2 Period of Performance

The minimum period of performance is 12 months. The total proposed period of performance
must not exceed 36 months. Grants may be awarded for up to a three-year performance period.
Annual reviews will be held according to the criteria specified in the NASA Grants and
Cooperative Agreement Handbook (14 CFR 1260). Proposals must define clear, measurable
milestones to be achieved for each year of performance in order to warrant continuation in the
second and third years.

2.2.3 Type of Award

All selected proposals will result in the award of grants, cooperative agreements, or intra- or
inter-Government transfers, as appropriate. Contracts are specifically excluded as an award
vehicle for this solicitation. Grants and cooperative agreements will be subject to the provisions
of the NASA Grants and Cooperative Agreement Handbook. If a commercial organization wants
to receive a grant or cooperative agreement, cost sharing is required unless the commercial
organization can demonstrate that it does not expect to receive substantial compensating benefits
for performance of the work. If this demonstration is made, cost sharing is not required but may
be offered voluntarily (see also Section D, Provision 1274.204, of the Grants Handbook).

2.3 Evaluation Criteria

Evaluation criteria are given in Section C.2 of the NASA Guidebook for Proposers.

The first criterion, intrinsic merit, includes the technical merit of the proposed investigation. In
addition to the factors given in the NASA Guidebook for Proposers, the evaluation criterion
"intrinsic merit" specifically includes the following factors:

1. Feasibility and merit of the proposed technical approach to achieve the technology
development objectives;
2. Degree of innovation of the proposed technology development concepts and approach;
3. Substantiated justification and appropriateness of the entry and exit technology readiness
level (TRL); and
4. Feasibility of obtaining the potential reduction in risk, cost, size, and development time, or making the newly enabled measurement, with the proposed sensor or instrument; and feasibility of making a demonstrable TRL increase. The TRL must advance by at least one (1) level during the performance period of the project.

The second criterion, relevance to NASA’s objectives, includes the applicability of the proposed investigation for technology needs in support of Earth Science measurements. In addition to the factors given in the NASA Guidebook for Proposers, the evaluation criterion “relevance to NASA’s strategic goals and objectives” specifically includes the following factors:

1. The proposal’s relevance and potential contribution to NASA’s scientific and technical areas of emphasis, including the potential to contribute to future Earth science instruments to make measurements which are part of the Decadal Survey measurements concepts or support other compelling Earth science measurements.
2. The potential for the sensor or instrument technology development to reduce the risk, cost, size, and development time of Earth science instruments or to enable new Earth science measurements. Potential cost reductions should be clearly stated and substantiated to the extent possible, with supporting analysis that indicates scalability;
3. The potential of the sensor or instrument technology to be integrated, once matured, into future Earth Science NASA missions and
4. The potential for the sensor or instrument technology development to have commercial benefits.

The third criterion is cost realism and reasonableness. In addition to the factors given in the NASA Guidebook for Proposers, the evaluation criterion “cost realism” specifically includes the following factors:

1. Adequacy and realism of proposed milestones and associated success criteria;
2. Realism and reasonableness of the proposed cost and comparison of costs to available funds;
3. Adherence to sound and consistent management practices appropriate to the TRL level of the proposed task;
4. Past performance and related experience in the proposed area of technology development;
5. Qualifications of key personnel and adequacy of facilities, staff, and equipment to support the proposed activity. This factor includes evaluation to ensure that the team has strong technology development and instrument development skills, as well as any leveraging/teaming such as recent SBIR awardees; and
6. Commitment of the organization’s management to the proposed technology development (evidenced by cost and resource sharing, prior teaming arrangements, etc.). Proposers should identify any previous investment by the organization/program and provide supporting documentation.
2.4 Technical Reporting Requirements

Once awarded, all status information, presentation material, and report deliverables applicable to this IIP solicitation shall be submitted to the web-based ESTO IIP-10 Award Administration e-Book located at http://esto.reisys.com/esto/. A user account on the ESTO e-Book will be provided to the PI upon award. Due to NASA IT security requirements, all PIs must register with NASA’s Identity Management and Account Exchange (IdMAX) system before a user account on e-Book will be established. In order to create an IdMAX account, some personal information will be required. All submissions to e-Book shall be made in PDF (preferred), Microsoft Word, Microsoft Excel, or Microsoft PowerPoint.

The following deliverables shall be required of awarded proposals. In cases where subcontract arrangements exist, consolidated project reports are the responsibility of the PI. The proposed budget should provide for these reporting requirements. In this context, “Annual” refers to a twelve-month task effort that commences at award.

2.4.1 Initial Plans and Reports

Within 15 days of award, the PI shall update a Project Plan, initial Quad Chart, and initial TRL assessment. The project plan, initial (entry) Quad Chart, and initial TRL assessment (and supporting data) shall be uploaded to the appropriate locations in the ESTO e-Book for this solicitation.

The project plan shall identify plans for all technical, schedule, and resource activities for the proposed life of the project.

The Quad Chart shall contain the following information:

- Upper Left Quadrant: “Description and Objectives”
- Lower Left Quadrant: “Approach” and “Co-Is/Partners”
- Upper Right Quadrant: A visual, graphic, or other pertinent information
- Lower Right Quadrant: “Milestone Schedule” and “Entry TRL.”

The Quad Chart shall be updated at least annually and more often if appropriate. A template is available in the ESTO e-Book under “Information” and “File Templates.”

An initial TRL assessment, and the basis for that assessment, shall be provided within 15 days of award for the critical technology developments of the activity. The TRL assessment shall be updated at least annually, more often if appropriate.

2.4.2 Bimonthly Technical Reports

The bimonthly technical report shall focus on the preceding three month’s efforts. Each report shall address:
1. **Technical status:** The PI shall summarize accomplishments for the preceding two months, including technical accomplishments (trade study results, requirements analysis, design, etc.), technology development results, and results of tests and/or demonstrations.

2. **Schedule status:** The PI shall address the status of major tasks and the variance from planned versus actual schedule, including tasks completed, tasks in process, tasks expected to complete later than planned, and tasks that are delayed in starting, with rationale for each and recovery plans as appropriate.

Bimonthly Technical Reports shall be uploaded to the appropriate location in the ESTO e-Book at two-month intervals, starting on the second-month anniversary date of the signing of the award vehicle.

In months for which the PI is providing interim or annual review, the requirement for a bimonthly report is superseded by the interim or annual review requirements discussed in the next two sections.

Reports shall be submitted in PDF, Microsoft Word, or Microsoft PowerPoint compatible file formats by the required due date, or by close of business of the first workday following the due date if the due date falls on a weekend or a holiday. A teleconference or brief meeting may be conducted between the ESTO and the PI to review and discuss each report.

2.4.3 Interim Reviews

The PI shall provide an Interim Review at the end of the first six-month calendar period commencing from the date of award and at twelve-month intervals thereafter. The PI must provide a presentation summarizing the work accomplished and results leading up to this Interim Review and must:

1. Describe the primary findings, technology development results, and technical status, e.g., status of design, construction of breadboards or prototype implementations, results of tests and/or proof-of-concept demonstrations, etc;
2. Describe the work planned for the remainder of the project and critical issues that need to be resolved to successfully complete the remaining planned work;
3. Summarize the cost and schedule status of the project, including any schedule slippage/acceleration. A schedule milestone chart of all major task activities shall be created and maintained and shown at all reviews. A cost data sheet shall be created and maintained, showing total project costs committed, obligated, and costed, along with a graphical representation of the project cost profile to completion;
4. Provide a summary of anticipated results at the end of the task; and
5. At the second review and subsequent reviews, address the comments and recommendations prepared by the reviewers participating in the most recent review.

The ESTO will conduct the Interim Review via teleconference. The presentation shall be uploaded to the appropriate location in the ESTO e-Book at least two (2) working days prior to the review. Following the review, the presentation, updated in accordance with comments and
discussion resulting from the review, will constitute the Interim Report and shall be uploaded to the appropriate location in the ESTO e-Book within ten days after the review.

2.4.4 Annual or Final Review

The PI shall provide an Annual Review at the end of each twelve-month calendar period commencing from the date of award. The Annual Reviews are similar to the Interim Reviews and include all of the products required at an Interim Review with the following exceptions:

1. The review is held at the PI’s facility or a mutually agreed to location.
2. The review is attended by an independent technical reviewer from an organization separately funded by ESTO.
3. Hardcopy handouts shall be provided by the PI at the review.
4. The PI may provide a laboratory demonstration, if appropriate, to show technical results and status.
5. Report any educational and outreach components of the project, e.g., graduate degrees, educational activities; technology infusion or patents applied for or granted; journal or conference publications; presentations at professional conferences, seminars and symposia; demonstrations; media exposure; and, other activities that contributed to the overall success of the research project.
6. The Annual Review should be comprehensive, and should include a discussion of the planned content of the written report.

The review package shall be uploaded to the appropriate location in the ESTO e-Book at least two (2) working days prior to the review. The presentation, updated in accordance with comments and discussion resulting from the review, together with the separate Annual Report, shall constitute the Annual Report deliverable, and shall be uploaded to the appropriate location in the ESTO e-Book within ten days after the review.

2.4.5 Final Review

The PI shall provide a Final Review at the completion of the activity. The Final Review is similar to the Annual Reviews and includes all of the products required at an Annual Review with the following exceptions:

1. The Final Review must provide conclusions of the work performed and make recommendations for follow-on activities that should be pursued, with estimates of the cost and schedule to achieve TRL 7.
2. As this is the Final Review, there is no need to present future work plans or a cost profile.

The written Final Report shall include the following:

1. Background of the project, including the science rationale for conducting this technology development;
2. Results of all analyses, element, subsystem, or system designs, breadboards and/or prototyping implementations and designs;
3. Performance analysis results of tests and/or demonstrations; estimation of reduction(s) in size, mass, power, volume and/or cost; improved performance; description of newly enabled capability; and documentation of technology dependencies;
4. Tables, graphs, diagrams, curves, sketches, photographs, and drawings in sufficient detail to comprehensively explain the results achieved;
5. An updated TRL assessment, including a rough order of magnitude cost and a description and estimate of the duration of the follow-on activities necessary to achieve TRL 7;
6. Updated Quad Chart; and
7. At the end of the period of performance, the PI shall provide a final Accomplishments Chart which contains the following information (a template is available in the e-Book):
 - Upper Left: “Description and Objectives.”
 - Middle: “Accomplishments.”
 - Upper Right: A visual, graphic, or other pertinent information.
 - Bottom: “Co-Is” (name and affiliation), “Entry TRL” and “Exit TRL.”

The Final Report, updated Quad Chart or Accomplishments Chart, and updated TRL assessment shall be uploaded with the updated Final Review presentation to the appropriate locations in the ESTO e-Book within ten days of the final review.

2.4.6 Earth Science Technology Conference and Workshops

The awardee is encouraged to participate in the annual Earth Science Technology Conference (ESTC). The ESTC is an opportunity for NASA planners, managers, technologists and scientists to review the research funded by the ESTO. It is also an opportunity for researchers from NASA, academia and industry to meet with their peers and to better understand NASA Earth science requirements.

Travel expenses will be provided for non-Government awardees selected to participate in the ESTC. A travel charge number will be provided to NASA awardees selected to participate; an invitational travel order will be issued to other (non-NASA) Government awardees selected to participate. Therefore, no travel costs for participation in ESTC should be included in the proposal. If selected for participation in the ESTC, the awardee should be prepared to make a presentation, provide a paper, or create a poster providing a description of the project, the objectives, approach, technical status, and schedule information.

2.5 Education and Public Outreach Opportunities

NASA policy strongly encourages participation in Education and Public Outreach (E/PO) activities by members of the science community. You may be eligible to propose a supplemental Education or Outreach effort if your research proposal is selected for award. The research award must have more than 12 months remaining at the time of submission of the supplement proposal.
For additional details concerning the submission of Outreach or Education supplement proposals, please see Supplemental Outreach Awards for ROSES Investigators (Appendix E.5) and Supplemental Education Awards for ROSES Investigators (Appendix E.6).

3. Summary of Key Information

<table>
<thead>
<tr>
<th>Expected program budget for first year of new awards</th>
<th>Up to $1.5M per year per award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of new awards pending adequate proposals of merit</td>
<td>~ 15-20</td>
</tr>
<tr>
<td>Maximum duration of awards</td>
<td>Minimum 1-year / Maximum 3-year awards</td>
</tr>
<tr>
<td>Due Date for Notice of Intent to Propose (NOI)</td>
<td>See Tables 2 and 3 in the ROSES Summary of Solicitation.</td>
</tr>
<tr>
<td>Due date for delivery of proposals</td>
<td>See Tables 2 and 3 in the ROSES Summary of Solicitation.</td>
</tr>
<tr>
<td>Page length for the central Science-Technical-Management section of proposal</td>
<td>15 pp; see also Chapter 2 of the NASA Guidebook for Proposers. See Section 2.1.2.2 of this appendix.</td>
</tr>
<tr>
<td>Relevance to NASA</td>
<td>This program is relevant to the Earth science strategic goals and subgoals in NASA’s Strategic Plan; see Table 1 and the references therein. Proposals that are relevant to this program are, by definition, relevant to NASA. See Section 2.1.2.2 of this appendix.</td>
</tr>
<tr>
<td>General information and overview of this solicitation</td>
<td>See the ROSES Summary of Solicitation.</td>
</tr>
<tr>
<td>Submission medium</td>
<td>Electronic proposal submission is required; no hard copy is required or permitted. See also Section IV of the ROSES Summary of Solicitation and Chapter 3 of the NASA Guideline for Proposers.</td>
</tr>
<tr>
<td>Web site for submission of proposal via NSPIRES</td>
<td>http://nspires.nasaprs.com/ (help desk available at nspires-help@nasaprs.com or (202) 479-9376)</td>
</tr>
<tr>
<td>Web site for submission of proposals via Grants.gov</td>
<td>http://grants.gov/ (help desk available at support@grants.gov or (800) 518-4726)</td>
</tr>
<tr>
<td>Funding opportunity number for downloading an application package from Grants.gov</td>
<td>NNH10ZDA001N-IIP</td>
</tr>
</tbody>
</table>
| NASA point of contact concerning this program | Mr. Parminder Ghuman
Earth Science Technology Office
Code 407
NASA Goddard Space Flight Center
Greenbelt, MD 20771
Telephone: (301) 286-8001
E-mail: Parminder.S.Ghuman@nasa.gov |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>