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1.0    Introduction 
The workshop was held from April 17-19, 2018 at the University of Colorado Earth Lab in 
Boulder Colorado. Approximately 60 people were invited and 75 attended.  Individual 
organizations are enumerated in Table 1. The workshop had a diverse mix of attendees from 
across academic, industry and government sectors as well as across domain from air quality, 
cryosphere and hydrology and finally, there was a mix of career stages with early and late 
career attendees.  
 

Amazon	Web	Services	(AWS) Booz	Allen	Hamilton	

Caltech City	of	Los	Angeles	

DigitalGlobe ESIP	

Esri GMU	

Jet	Propulsion	Laboratory,	California	Institute	
of	Technology 

Lingua	Logica	LLC	

Middle	Path	EcoSolutions MIT	

NASA	Ames	Research	Center.	SGT	Inc	at	NASA	
Ames,	USRA,	NASA	Ames,	ARC,	BAER	
Institute/	NASA	Ames 

NASA	Earth	Science	Technology	Office	

NASA	GES	DISC,	UMD/ESSIC	&	NASA/GSFC NASA	Goddard	

NASA	Headquarters NASA	Langley	Research	Center,	LaRC	ASDC	

OpenAQ SSAI	

Stanford	University The	HDF	Group	

UC	Irvine UCAR	

University	of	Alabama University	of	Colorado	Boulder,	Univ.	of	
Colorado	-	LASP	

University	of	Houston University	of	Maryland,	UMBC	

USACE-CRREL 	

Table 1 Institutional Attendees at the ESIP Machine Learning Workshop 
 



1.1    Need for Expanded Conversation - Analytic Center Framework  
Over the past five years, considerable discussion has been held in the ESIP community as to 
how emerging information technologies could be made easier to use by the Earth science 
domains in order to improve the speed and effectiveness of scientific investigation.  These 
discussions have been held in the Summer and Winter Meetings as well as in some of the 
clusters.  Clearly, more information was needed and more direct interaction between the various 
communities. 
 
One concept that has emerged is that of an Analytic Center, a framework that harmonizes the 
tools, data and computational resources to support the needs of the Principal Investigator and 
their team. The fundamental concept can be seen in Figure 1.  Re-framing the discussion to 
focus on the investigation and the Principal Investigator, the Analytic Center is a complement to 
the data-centric approaches and integrates all the various data sources, regardless of origin. 
This framework is expected to vary in instantiation to support the way the PI wants to conduct 
their investigation.  As a framework, it provides a common way to interface the tools to the 
storage system so that the tools do not require significant re-configuration to work with the 
storage and computing cyberinfrastructure.  Some Analytic Centers which involve multiple users 
and a series of investigations may become persistent and take on the aspects of infrastructure 
where others may be instantiated, configured for a specific study or experiment, documented 
and disposed.  A number of examples of Analytic Centers have evolved over the past few years, 
including the NASA Earth Exchange (NEX) at NASA Ames Research Center, supporting Land 
Change/Land Use studies and the Oceanworks system at the Physical Oceanography DAAC at 
the Jet Propulsion Laboratory (JPL) supporting the Physical Oceanography community.   
 
In order for this evolution to move forward, further concentrated conversation among the 
science user community and the information technology communities (machine learning and 
data science) seemed appropriate.  The information technology communities needed a better 
understanding of the needs of the science communities: 

● How they differ by science domain, along with shared needs,  
● What processes they use for conducting their investigations,  
● What obstacles they meet in trying to leverage the technology, and 
● What perceptions and sociological resistance to the use of the technology exist. 

 
Many of the Earth Science domains have started to experiment or even to operationalize the 
use of Machine Learning in their research.  However, many researchers  indicated frustration in 
understanding how the tools worked and when to use which ones.  They also wondered if they 
were using the best approach and felt that some of the more advanced capabilities could be 
useful to them but lacked time and collaborators in trying to apply them.  They also expressed 
concerns about how to balance the need to understand how to use the tools correctly and to 
trust them against the time consuming process of developing robust, validated software 
themselves. 
 



   

 
 

Figure 1 The Analytic Center is a Conceptual Framework for Harmonizing Tools, Data and 
Cyberinfrastructure to meet the Needs of a Scientific Investigation 

1.2    Workshop Objectives  
As an element of ESIP’s objectives to build communities in Earth Science, the overall objective 
of this Workshop was to bridge the cross-cutting machine learning expert community with 
technically literate domain scientist to apply machine learning techniques in new areas.   
 
This bridging discussion enables the group to define needs and constraints for machine learning 
tool development to support science investigations.  It would also provide each of the separate 
communities an instructive overview of the other group’s needs and capabilities.  Specifically, it 
would explain the machine learning technologies to domain scientists and provide an 
understanding of domain science challenges to machine learning experts.  Three science 
domains were selected based on interest and an assessment of the degree to which information 
technology could be useful.  These were hydrology, cryosphere and tropospheric composition.  
Through consultation with program managers and program scientists, the focus in each was 
narrowed to Western States Water, sea ice classification from space and air quality in urban 
environments.  Idea exchange, networking, collaboration and professional development were all 



intended activities of this interactive workshop. The attendees were all asked to identify their 
own objective for attending the workshop and are described in Appendix D. Common themes 
were learning about machine learning and understanding how it could be applied to remotely 
sensed data in specific domain problems. The workshop attendees tended to skew toward air 
quality and, as a result, there are more air quality specific objectives listed.  
  

1.3    Workshop Logistics and Format  
The workshop was designed to establish a baseline between machine learning and domain 
experts and then provide an opportunity for them to work together on real problems defined by 
the users. The workshop started by describing the current state of machine learning ahead of 
the workshop with read-ahead material and pre-recorded webinars going in depth on technical 
topics. Most attendees knew less than half of the other workshop attendees, so day 1 was 
designed to begin with networking activities to introduce the room, provide additional stage-
setting from Mike Little and a Machine Learning panel moderated by Dan Crichton. The end of 
day 1 was the beginning of the idea collection phase, where attendees all shared one ‘Big Idea’ 
listed in Appendix D and the ideas were anonymously passed through the group and scored five 
times. This exercise gave an initial prioritization of interest in the room. Day 2 focused on 
bridging the divide between machine learning technologist without clear applications and 
domain users with challenges that might be solved with machine learning applications. The 
morning of Day 2 was devoted to technologist interviewing users in small groups and the groups 
reporting back. The second half of Day 2 the attendees formed mixed teams and sketched out 
proposals for these challenges. Day 3 was primarily devoted to proposal presentations with 
Q&A from the room and a very brief wrap-up. The detailed agenda can be found in Appendix B.   

2.0    Current State of Machine Learning in Earth Science  - Pre-
workshop material & Tech Panel Take-aways  
Machine learning has achieved significant success in the financial and security industries.  The 
Federal security agencies have made significant investments in maturing the theories advanced 
during the 1990’s into a robust, fast and trusted capability. 
 
In Earth Science, adoption has been irregular. While some researchers have continued to use 
more conventional techniques for analysis, others,including commercial interests have adopted 
tools and adjusted their approach to analysis to include these techniques, often using open 
source code for algorithms.  Some commercial interests have organized around the effective 
use of these new tools and techniques and profited from their willingness to take chances. 
 
In some industries, the users have moved on to more sophisticated questions, based on brief 
but effective experiences with the application of machine learning to analysis of large volumes 
of disparate data. 



3.0   User Challenges and Proposals  
 
User defined applications and the Current State 
The attendees divided themselves among the nine tables for two rounds of user interviews. 
Users were asked questions like: 

● Describe a day in the life? (Workflow – listen for bottlenecks) 
● Where do you spend 80% of your time? 
● Tell me a story about your work? 
● Tell us about a problem you haven’t solved? 
● If you had a magic wand, what would you fix? 

  
Nine user applications were identified from the attendees. The topics covered were: 
  
Hydrology - The users indicated they want to combine machine learning and physical models to 
predict where water will be 10 years from now. 
  
Cryosphere investigations envisioned: 

● Autonomous rover on Greenland and eventually Europa 
● Surface of sea ice (categorization from space) 
● Bedrock topography under land ice to predict sea level rise 
● Acceleration and changes in ice sheets and changes in ice dynamics 

  
Air Quality (AQ) domain experts identified the following investigations: 

● Improved AQ forecast at high resolution in both spatial and temporal dimensions, 
● Characterizing AQ in cities 
● Aerosol Optical Depth (AOD) -> PM2.5 (atmospheric particulate matter (PM) that have a 

diameter of less than 2.5 micrometers) correlation over 11 Western States for 2008-
2014. 

● Heat island – how to connect policy goals with implementation and evaluation 
  
The users identified a number of common challenges: 

● Way too much time is spent on data wrangling –  
○ Preprocessing archive data files 
○ Finding data that is available and a lack of awareness of all the sources 
○ Lack of quantified uncertainty/quality characteristics for remotely sensed data 
○ Missing data from data sets 

 
● The observation scale is sufficiently large to be daunting. 

○ Data volume is often very large, both current and expected. 
○ The decision to do analysis computation.  The full range of choices include a 

workstation, data center cluster, commercial cloud computing or HPC? 
○ Combining physical models with machine learning techniques to yield a better 

understanding of the phenomenon.  In particular, how to constrain the models? 



○ Training data issues. They reported that manual construction of training data sets 
is not scalable and that there are no/limited classified observations available. 

  
The Groups Developed Proposals to solve Domain Science Questions using Machine 
Learning 
Nine groups formed around the topics identified and began to think about solutions both on a 
near term scale and on a longer-full proposal time scale. One observation from the group was 
that there is a need to industrialize computing and machine learning capabilities to make it 
easier to focus on interesting science problems   

4.0    Conclusions  

4.1    Lessons Learned Regarding the Workshop 
● The facilitators should calibrate expectations on funding up front.  
● It would be helpful to announce a more structured agenda ahead of time and clearly 

articulating path for attendees at start of each section (this is where we have been, 
where we are now and where we are going).  

● Trust issues were identified among potential new collaborators.  There was expressed a 
general concern in sharing ideas for fear that a collaborator might “steal my idea and 
then drop me as a collaborator.”  

● Remote access was less than satisfactory to permit true participation. It would be useful 
to run some exercises to figure out what this would take.  Microphones in the room failed 
to pick up some participants. It was difficult for remote participants to insert themselves 
into the conversation. 

4.2    Technology Gaps 
● Cutting edge machine learning algorithms and techniques need to be available, 

packaged in some way and well understood so as to be usable. 
● Techniques need to be developed for working with sparse environmental training data. 
● Techniques and tools are needed for combining process (physical) models with machine 

learning models in a meaningful way. 
● Computer security implementations are outdated and uncooperative with science 

investigations. Research in making computational resources secure and yet easily 
usable would be valuable. 

● Expert system support and online help providing assistance to users is ineffective, 
unresponsive and lacks needed content. 

● More options are needed in selecting and using Machine Learning applications. 
● Regression and machine learning techniques generally fail to convey the physicality of 

the processes being models/forecasted and lack acceptance by some science 
communities.  These shortcomings make it difficult to understand the boundary 
conditions.  More work needs to be done on techniques that provide insight to the 
physical processes. 



 
4.3    Obstacles to Adoption  
A number of obstacles were identified in the discussion. 

● Data wrangling is one of the biggest obstacles to using large volumes data from, 
potentially, different sources. This is labor intensive and requires substantial 
manipulation of the original source data. 

● Data availability is sometimes an obstacle when the data has never have been published 
or made accessible.  A roadmap pointing towards all Earth science measurements and 
access mechanisms to them would be useful. 

● Reduce the learning curve for new comers with a catalog or guide of what Machine 
Learning tools are available and to which category of problem they can be applied. 

● Specific machine learning methods need help to tackle specific problems.  
● Clarity is lacking in understanding which techniques are likely to succeed, have heritage, 

community acceptance, etc. 
● Existing data handling and processing infrastructure is inadequate to support capacity 

demands (including NASA, NSF and institutions),  
● Expert Assistance without humans in the loop should assist in selecting Machine 

Learning algorithms would be invaluable.  Sharing experience-based advantages and 
limitations  of each. 

  
Some suggestions were flagged in the discussion to help make the problem definition clearer.  
One thought was to create collaborative data hubs where users can contribute to data 
preparation (tagging, filtering, cleaning).  Another involved tools which perform data hygiene on 
demand with certain specifications. 

● Expert advice would be useful on the application of algorithm domains, including pros 
and cons.  

 
There are so many different technology gaps that need to be worked through, some of which 
were common across groups: 

● technology-end user interface:  
● optimizing real time sensors,  
● opportunities for augmented reality tools.  

 
Other suggestions focus more on the community-science interface:  

● transitioning the knowledge-worker workforce as their daily activities become more 
automated, 

● understanding connections between science, technology and government policy,  
● how to influence public thinking regarding science while balancing ethics.  

4.4 Evaluation of Workshop Format  
 
Attendees were surveyed for the week following the workshop. 47 of 75 responded completely 
and the overall sentiment was the meeting had been a worthwhile, productive experience, but 



the bar could have been higher for engagement. The facilities at CU EarthLab were great. The 
room was at capacity and the workshop could have benefited from a slightly larger room.  
 
Attendees felt that their objectives had been met or exceeded, but that quantifiable next steps 
needed to be taken and that the workshop only scratched the surface of gathering requirements 
from the domain scientist. The interactive format was well-received, but a bit shocking to 
attendees who were used to a more traditional workshop of one directional information flow. In 
future workshops a more clearly scoped agenda should be given out ahead of time to allow the 
participants to prepare for more contributions.  
 
With 75 participants who are generally new to each other, networking and introductions are 
clearly needed. A suggestion to have more shorter, lightning talks as another way to provide 
context is a good idea for future meetings. The activity with the most satisfaction was the 
user/technologist interviews on the morning of Day 2. It would be helpful to brainstorm a few 
more questions ahead of time that users could consider ahead of the meeting.   
 
Constructive feedback around the idea generation activities on Day 1 included the need for 
more professional facilitators supporting the groups. One suggestion from participants 
addressed the idea generation component: “The first idea generation activity was prone to first 
reaction and bias. A series of quick (2 minute) idea generation, followed by 2 min q&a, done 3 times 
THEN take a few minutes to generate idea on post it's. These can then be binned in some way. The 
"votes" were not grounded in any one on day one.” 
 
Day 2 proposal activity also received useful feedback:  

● The proposal process was a little chaotic and random. It could be streamlined by having the 
POC of each team to give a 5 minute overview to allow the rest of the participants to make a 
more intelligent choice as to which group to join. 

● Might be a more effective way for CS people to select Users/Projects that they could 
contribute to. Process felt a bit random to me. 

●  it might have been smart to ask proposal presenters to say what the weakest or highest-risk 
portions of their proposal was/were, and where they (as researchers) felt the *real* interest 
is. I.e., "Parts A, B, and D are standard, but nobody has ever done C and it has broad 
applicability". 

● Rather than the 90 day proposal using ML, perhaps frame the task ask a concept study to 
demonstrate ML, or demonstrate how a particular science domain would benefit in a 
significant way... ID what cannot be achieved right now with existing tools. 

 
Complete survey results are available at: 
https://data.surveygizmo.com/r/163668_5ae0d9dc0028f3.58406937 

5.0   Outcomes and Next Steps   
The desired outcomes of this workshop were: (1) identifying gaps in current machine learning 
technologies; (2)  fostering new cross-cutting teams of domain and machine learning experts 
and (3) to socialize and refine the concept of the Analytic Center. These outcomes were met 



with the above gaps listed. According to the attendees they did form quantifiable new 
colleagues and of the 48 respondents, 43 anticipate collaborations from people met at the 
workshop.  
 
The primary area of specific analytic center feedback was around the user input. From Day 1 of 
the workshop, the group felt that data, tools and computational infrastructure had all been 
covered, but the user input was where the framework was lacking. Day 2 and 3 of the workshop 
began to address that gap. The momentum gained at the workshop will be carried forward 
through three mechanisms within ESIP. ESIP Lab Incubator awards, Summer Meeting Sessions 
and travel and an ESIP Machine Learning cluster.  
 
Incubator Call for Proposals -  
The Earth Science Information Partners (ESIP) Lab is happy to announce our spring 2018 
request for Incubator-project proposals. For this round of funding, we have identified the 
following topics as emergent areas of need in the Earth science community, and for this RFP, 
project proposals that address these areas will be given priority. 
 
- Proof-of-concept for emerging technologies slated for operational use. 
- Modernization of Earth science workflows using open source, machine learning and/or cloud 
computing. 
- Data provenance to advance data-driven decision making. 
 
Projects have a 6-8-month duration. A typical budget for Lab projects is $7,000, however, larger 
budgets will be considered with the firm limit that costs may not exceed $10,000. Deadline for 
submission is May 30, 2018. You can read the full solicitation here: http://www.esipfed.org/wp-
content/uploads/2018/04/May-2018-Request-for-Proposals.pdf 
 
Summer Meeting Sessions Proposed:  
The ESIP Summer Meeting will be July 17-20, 2018 in Tucson, Arizona. Details on the meeting 
are here.  
 

ML Workshop Report 

This session is a series of talks reporting the initial MLWS along 
with work performed and progress during the 90 day follow-up 
period. 

ML Working Session 

Machine Learning engagement activities to increase the 
connectivity among data providers, Earth scientists, machine 
learning practitioners and computer service providers 



 
Work through ESIP Clusters  
ESIP Clusters are communities of practice around specific technologies or application areas. 
Cluster take advantage of the backbone infrastructure provided by ESIP. The outcomes of this 
workshop may be well-suited for a machine learning cluster or to revive the Air Quality Cluster.  
 

Clusters 
 

 
 

  



Appendix A - Attendees 
 

First Name Last Name Company 

Oleg Alexandrov SGT Inc at NASA Ames 

Jason Barnett LaRC ASDC 

William Baugh DigitalGlobe 

Gerald Bawden NASA Headquarters 

Sabrina Bornstein City of Los Angeles 

Brian Bue Jet Propulsion Laboratory, California Institute of Technology 

Megan Cattau Earth Lab, University of Colorado Boulder 

Chris Checco Amazon Web Services (AWS) 

Gao Chen NASA Langley Research Center 

Ved Chirayath NASA Ames Research Center 

Yunsoo Choi University of Houston 

Marge Cole NASA / SGT, Inc. 

Daniel Crichton Jet Propulsion Laboratory, California Institute of Technology 

Tom Cwik Jet Propulsion Laboratory, California Institute of Technology 

Kamalika Das USRA, NASA Ames 



Jeremy Diaz Earth Lab, University of Colorado Boulder 

Daniel Duffy NASA Goddard 

Bart Forman University of Maryland 

Steve Fowler NASA ESTO 

Dejian Fu Jet Propulsion Laboratory, California Institute of Technology 

Sangram Ganguly BAER Institute/ NASA Ames 

Ted Habermann The HDF Group 

Colene Haffke NASA Headquarters 

Christa Hasenkopf OpenAQ 

Daven Henze University of Colorado at Boulder 

Ute Herzfeld ECEE and CIRES, University of Colorado at Boulder 

Kimberly Hines NASA ESTO 

Jeanne Holm City of Los Angeles 

Hook Hua Jet Propulsion Laboratory, California Institute of Technology 

Thomas Huang Jet Propulsion Laboratory, California Institute of Technology 

Beth Huffer Lingua Logica LLC 

Balaji Iyer Amazon Web Services (AWS) 



Chris Jenkins University of Colorado 

Brian Johnson Earth Lab, University of Colorado Boulder 

Max Joseph Earth Lab, University of Colorado Boulder 

Thomas Kurosu Jet Propulsion Laboratory, California Institute of Technology 

Sari Ladin-Sienne City of Los Angeles 

Barry Lefer NASA Headquarters 

Alan Li NASA ARC 

Michael Little NASA ESTO 

Melissa May Maestas Earth Lab, University of Colorado Boulder 

Ashish Mahabal Caltech 

Joe McGlinchy Earth Lab, University of Colorado Boulder 

Scott McMichael NASA ARC 

Piyush Mehrotra NASA ARC 

Nathan Mietkiewicz Earth Lab, University of Colorado Boulder 

Mathieu Morlighem UC Irvine 

Chelsea Nagy Earth Lab, University of Colorado at Boulder 

Kumar Navulur DigitalGlobe 



Grey Nearing University of Alabama 

Nikunj Oza NASA ARC 

Victor Pankratius MIT 

Craig Pelissier SSAI 

Chris Polashenski USACE-CRREL 

Amy Povak DigitalGlobe 

Erin Robinson ESIP 

Gian Franco Sacco Jet Propulsion Laboratory, California Institute of Technology 

Lynne Schreiber UCAR 

Dustin Schroeder Stanford University 

Michael Seablom NASA Headquarters 

James Sill Esri 

Jennifer Sleeman University of Maryland, Baltimore County 

Ben Smith Jet Propulsion Laboratory, California Institute of Technology 

Florence Tan NASA HQ 

Brian Tisdale Booz Allen Hamilton 

Michael Turmon Jet Propulsion Laboratory, California Institute of Technology 

Arika Virapongse Middle Path EcoSolutions 



Leah Wasser Earth Lab, University of Colorado Boulder 

Jennifer Wei NASA GES DISC 

Christine White Esri 

Daniel Wilson Esri 

Anne Wilson University of Colorado - LASP 

Chaowei Yang George Mason University 

Soni Yatheendradas University of Maryland/ESSIC & NASA GSFC 

 
 
 
 



Appendix B - Agenda 
 
Day 1 - Recording from GoToMeeting 
1:00 Welcome & Stage setting -  5 min  
1:05 Welcome and Introduction to Earthlab - 10 min (Brian Johnson, EarthLab)   
1:15 Overview of Workshop, ESIP intro & Group intros - Erin (30 mins)  

● Introductions from group - In no more than 30 seconds  
i. Name 
ii. Organization and project 
iii. What do you hope to get out of the workshop  
iv. Dots representing workshop interest and science problem domain 

 
Active Listening: Audience using three colors of post-its to capture Roses or strengths, Thorns 
or problems, or Buds or opportunities. Think of Bold ideas too  
2:00 Analytic Center Intro () 
2:30 - 4:00 Panel - Dan Crichton, Moderator 

b. Esri - Christine White 
c. AWS - Chris Checco  
d. Digital Globe - Bill Baugh 
e. MIT - Victor Pankratius 
f. NASA Ames - Kamalika Das 

   
4-5 Each participant contributes a bold idea if needed based on conversations. Use the 25/10 
exercise to mix and rank ideas. Identify top 11 ideas 
 
5-5:15 Wrap up (shuttle back to hotel + drivers)  
 
Day 2 - Recording from GoToMeeting 
 
8:30 Recap day 1 - room check in  
 
9:00 - User Interviews - Users self-identified out of the attendees and formed eight topical 
groups. The machine learning experts developed a few questions to guide the interviews. The 
group came back together and each topic had a table. Machine learners interviewed domain 
experts. Groups did two rounds of interviews - one tech person + user stayed at the tables for 
continuity  
 
Interview Questions:  
1. Day in the life? (Workflow – listen for bottlenecks)  
2. Where do you spend 80% of your time?  
3. Tell me a story about your work?  
4. Tell us about a problem you haven’t solved?  
5. If you had a magic wand, what would you do?  



 
10:15-10:30 AM break  
 
10:30 - 11 Wrap-up of interview results  
11-12 - Users reported back to room on their challenges  
 
 
12-1 lunch and break - can come back to board and try again if you don’t like it and you can join 
other teams  
 
1-4:30 - Break into teams and develop proposals based on the challenges described  
 
Day 3 - Recording from GoToMeeting 
8:30-9 Recap from day 2 
9-11:30  Pitch final prototype proposals (10 mins + 5 mins for questions from the group)  
11:30 - 12:30 Lunch & Brief discussion of next steps   

  



Appendix C - Raw Material Collected from Workshop 
 
Meeting Hopes - Day 1 Introduction  
 

I hope to learn how to use machine learning with space images  

Ongoing + new science opportunities to apply geospatial technologies (and understand those 
that already exists)  

How to integrate ML into NASA's Water & Energy Cycle Focus area  

New Ideas for making LA more resilient esp related to climate risks 

Potential future collaborative talks in ML for remote sensing 

A broad understanding of how others are using machine learning; an understanding if my 
gaps in knowledge are consensus gaps in knowledge 

Ideas,; observation needs  

learning latest & greatest ML for Earth science; meeting new collaborators and making new 
partners  

I want to meet ML colleagues. Air pollution forecasting modeler  

What advances in ML are taking place and what technology gaps still exist 

Opportunities to advance science through machine learning 

1. Identify interesting scientific applications that can benefit from use of ML; 2. special focus: 
physics infusion into ML/data modeling; 3. non-conventional data sources that help the 
discovery process 

science ideas; what ML scientist are interested in 

New ideas 

Knowledge of open source ML availability 



Applications for state & local government 

How machine learning help in AQ science 

I would like to see advancements in DL algorithms for Earth sciences and specifically scaling 
algorithm in hybrid cloud 

learn about how data is used + documented 

What cryo problems could benefit most from ML; What hesitation cryo science have to 
learning/using techniques  

Brainstorm ways the openaq community can apply ML (or access ML community to our giant 
AQ data set) 

Ideas for ML applications and Techniques in Air Quality 

Learn new ML approaches; design cool pilot project with others  

Improved understanding of how to ML w/high value to the public 

Pilot to improve air quality in LA driven by Data, models + changed behavior and outcomes 
using ML 

New ML applications  

Better grasp of ML application; ideas/areas how to use it; Hands on example 

A clear direction on how earth science data/machine learning can help w/ long-term planning 
for LA 

How ML can help understand Air Quality 

Explore new areas for machine learning applicability w/ new data types  

Obstacles and gaps  

Resources for learning more about machine learning 



Learning of problems that can be solved by using existing ML  

Better understanding of utility of DL/ML in applied remote sensing research  

Learn about active and potential ML techniques/projects for cryosphere study 

Requirements of the HW/SW infrastructure required to support ML technologist and scientist 

Identify what ML approach can be used to better understand basal properties under the ice 
sheet 

what are other disciplines doing that I can borrow? How can I make what I am doing relevant 
to more people 

I would like to gain better  understanding of where ML has been and needs to be applied to 
Earth science 

Ideas 

Collaboration w/ people more capable at handling massive datasets (I can bring science 
needs & algorithms)  

Interest in user needs (how can high resolution data help); networking  

understand ML applications; new connections; experiment w/ facilitation techniques to bridge 
gaps between science and tech communities  

Identify what, if any problems in radio glaciology are optimally suited for machine learning 

Learn about current SOA in Machine Learning; learn about current applications and research 
endeavors  

I hope to learn more about the science looking for problems to work on  

Ideas to incorporate ML into Autonomy applications; potential paths of development ML  

new relationships; science user requirements  

An understanding of what the leadership wants to accomplish with this initiative  



I'd like to gain a better understanding of the skills we should be teaching to support this type 
of science  

Find a solution to mitigate climate change by combining data 

Interesting use cases for scientists in geospatial machine learning 

Greater understanding of ML techniques and science applications  

An understanding of gaps that machine learning might fill in climate science 

Landscape of AI for Earth science 

I need more info of available tools (e.g. NEX) that can be leveraged for deep learning and 
machine learning applications in hydrology  

1. learning more about use cases, challenges to use ML, deep learning; 2. how ans ml 
services can help solve problems 3. Actionable next steps  

An understanding of the array of use cases which Earth science deems impactful  

Connect to potential collaborators; input from science & policy community about problems 
they would like tech to try to solve 

 
 
 
Strengths, Opportunities & Problems with Machine Learning - Active Listening from Day 
1 Session:  
 

Identify problems with analytic center  Strengths 

open source use cases + associated data, code, algorithms for easier 
replication 

Strengths 

workflows to capture end-to-end earth science problem solving, splicing in 
new methods, new datasets, etc  

Strengths 

Creating transparency for peer-review trust Strengths 

How to improve partial physics as a soft constraint on ML-
learning/predictability 

Strengths 



Standardize data (metadata) Strengths 

Analytic center framework makes work more effective Strengths 

Cross-product integration Strengths 

Analysis with data from multiple sources Strengths 

Data organization - Pandas, x-array Strengths 

Apply existing Techniques for many sets they will work  Strengths 

Need way for scientists to understand how the hardware affects data 
interpretation 

Strengths 

Build this into data analytics center, say flowchart but can launch tools 
directly  

Strengths 

Easy to use decision framework for users to choose model, viz, and 
understand risks/limitations 

Strengths 

ID pros and cons of tools Strengths 

chance to seamlessly move between learning via data versus learning via 
physics 

Strengths 

organizing data in cloud for performance Strengths 

prediction w/out understanding Strengths 

metadata Strengths 

research in new machine learning techniques Strengths 

tech advance opportunities for science Strengths 

build of community of liaisons between data works + data consumers 
(agriculture, health & energy) 

Strengths 



synergy of data, methods and tools Strengths 

Basic computational framework -> power of learning from data and 
physics 

Strengths 

new ML algorithms depending on science applications Strengths 

focus on the big gulf between data publishing + data adoption + use 
operationally  

Strengths 

understanding end user's data needs when designing the hardware, 
science measurements and data collection 

Strengths 

Explore physical chemical consisting of the data observations Strengths 

Data assimilation & osses for prospective remote sensing missions w/ ML Strengths 

Cross-pollination of expertise across fields Strengths 

improving accountability in use of data/methods through collaborations Strengths 

Abstract data sets for transfer learning from other domains Strengths 

A unified NASA AOD product Strengths 

collecting and sharing tools for accessing and manipulating data Strengths 

Improved data delivery & access (permission) Strengths 

Are we building infrastructure or tools that run within infrastructure  Problems 

glaciers Problems 

Complexity Problems 

non-conforming data, units, gsd, projection Problems 

prediction w/out understanding the physics Problems 



more beer; facilitate conversations + collaborations Problems 

breakdown in stakeholder communication along value chain Problems 

Scientist change their minds Problems 

proposals are one sided science only or tech only Problems 

what tools do scientist need?  Problems 

Barriers to entry Problems 

It's hard for policy makers to get data that they can use Problems 

gaps in skill and knowledge in big data technologies Problems 

Never going to get all data in perfect format Problems 

Problem accessing the data Problems 

How do you envision projects with narrower scope to achieve the analytics 
center "compatibility" 

Problems 

lack of investment in new computational techniques in machine learning Problems 

weak general understanding of what machine learning is and is not Problems 

Accessing and understanding interpreting satellite data Problems 

how do you employ ml for use without code? There are so many different 
options, this makes this a challenge 

Problems 

no framework for combining the strengths of data-based prediction w/ the 
strengths of physics based prediction/explanation. PDEs are bad at 
learning from data. Not constrained by ANNs or physics 

Problems 

Data wrangling and processing for use in model frameworks Problems 



Ensuring a consistent and working compute environment for multiple 
platforms 

Problems 

Need enough data to train the model Problems 

Need for more training data Problems 

Look for physical understanding from ML/DL Problems 

People making tools not talking to end users Problems 

Machine learning for data discovery Problems 

metadata Problems 

Documentation of Machine Learning algorithms + results  Problems 

data migration to cloud ie ETL?  Problems 

Scale Problems 

Identify problems with analytic center  Problems 

ML + Earth science communities don't mix Problems 

Too many answers, not enough questions Problems 

Scientist may make assumptions about data that are incorrect - e.g. data 
have to be interpreted 

Problems 

How to look from observations to the events  Problems 

ML, DL for detecting the events  opportunities  

ML for finding rules & knowledge opportunities  

A suite of tools available + gaps opportunities  



How to know when we have events of interest. AQ problems, Heavy 
rainfall 

Problems 

reproducible work flows opportunities  

Benchmarking suite of ML models opportunities  

Lots of labeled data opportunities  

People hungry for ML opportunities  

Volume of data  opportunities  

More objective analysis opportunities  

more accurate analysis opportunities  

Experimental analytic center in AQ opportunities  

Taking advantage of information from a dense set of data, time and space opportunities  

Leverage military investments opportunities  

New questions we have never considered opportunities  

"ingest" big datasets opportunities  

New entrants who think "outside of the box"  opportunities  

ML is super-good at hydrological forecasting opportunities  

ML + cloud+commercial accomplish more off the shelf opportunities  

Jobs for grad students  opportunities  

NEX demonstrates potential of analytic center for ML of earth science data  opportunities  

 



 
Big ideas with Scores:  
 

NASA library of training data and ML/DL models 21 

Community-based library for data-merging, format, organization, management and 
processing with interchangeable pipelines -. Make it off the shelf 

21 

Identifying abrupt change in ice sheet configurations from combined radar altimetry 
and multi-spectral imagery 

21 

Exemplar based CBIR for searching large remote sensing archive (CBIR - content 
based image retrieval) choose examples to search for similar content in the dataset 

21 

How to impose physical constraints on ML models 21 

Expand Victor's approach into a framework for change management which is adapted 
to the specific objectives of the particular project 

20 

More ML on spacecraft, construct ML analytics pipeline from the ground station; 
increase opportunities to share training datasets; teach NASA course on ML for 
science  

20 

Use machine learning to develop 3 year predictive models for water availability in the 
western u.s. using historic; current, ground based satellite data. Can the past help 
forecast the future trends  

20 

The topography under big ice sheets remains poorly known. It is only measured by 
radar along flight lines. ML could help us predict the topography between these flight 
lines based on other predictions(surface features, ice speed, …) for which we have full 
coverage - map sub ice sheet topography   

19 

Understand how urban built environment affects heat and quality of life using satellite 
data + smart city sensors + interventions  

19 

Use ML and satellite/ground data to improve air quality forecasting - ozone, pm2.5 19 

Metadata describes how knowns were accounted for in complex results  18 

ML based metadata data catalog for top five use cases; ML based data quality that 
feeds to data lake 

18 

Big idea: fleshing out a fuller understanding of sub-daily AQ patterns of cities of the 
world to: 1. find cities facing similar AQ temporal patterns, pollutant - combo issues; (2) 
find suitable cities to launch epi studies or intervention work studies on AQ + health (3) 

18 



foster international collaboration 

ML to fuse hyper or multispectral imagery with other land images to predict wildfire 
probability over various regions  

18 

Establishment of a hybrid model combining DNN/Data assimilation/AQ 3DCTM model 
to forecast better tomorrow air quality and provide a…  

18 

Apply machine learning to attribute the contribution of each source that drives the 
tropospheric ozone trend 

18 

Machine learning to aid constellations of satellites helping creating sensor-webs in 
space 

17 

Utilize machine learning techniques to refine and filter surface observation sites (solar 
or meteorologist) time series data in order to see their relationships to model/gridded 
datasets 

17 

Support for automated discovery of linkages between observed variables, for example, 
as links in a Bayesian network 

17 

Model Assessment, measurement consistency between different variables  17 

Create an OPEN Big data repo with metadata and documentation and let ML methods 
be trained on them  

16 

Use Machine learning to help solve problems to reduce increasing temperatures + 
urban heat island effect. Specifically, at the interaction between temp and the built 
environment - both how trends will exacerbate projection, heat and mitigate  

16 

Support for automated adaption of ML hyper-parameters within an analytic center 16 

Clearly understand the deep benefits deep learning offers for problems such as 
assimilation, feature engineering, etc 

16 

Facilitate/support interdisciplinary teams for ML applications in order to enhance the 
discovery/communication of science results to engage and reassure new science 
communities of the value of ML technologies 

16 

Genetic programming to compare M.L. mode performance to existing scientific models. 
Use scientific models to simulate training data to see if ML models can 
generalize/explore results 

16 

Global data/pattern analysis combining Air quality and greenhouse gas - remote 
sensing 

16 



Use of deep learning/GAN in the absence of data - send rover to 
greenland/antartica/artic to study how ice retreats temporally (1 year - 10 years) & 
spatially. Rover must be able to rover autonomous & detect/react to obstacles - active 
error correct/diagnosis 

15 

Quantify sea ice thickness from altimetry data 15 

Set aside funding for a centennial challenge to solicit & award best ideas; use funding 
for computing infrastructure and data system support 

15 

A framework for evaluation of machine learning algorithm performance in the context 
of scientific discovery (not necessarily ml metrics such as squared error, AUC, etc.)  

15 

New ways to leverage ML for city of LA. Also identify NASA datasets for use 15 

Finally time has come to create the satellite labelled training, database open to public - 
call it "SATNET" just like we have "ImageNet" for camera images - 5 mil image 
samples  

14 

ML: Troll science abstracts in a domain research need - discovery; use ML to ID high 
value science needed in a domain Hydro, cryo, AQ 

14 

End goal: automate the pre-processing of data that is necessary to make it analysis-
ready; Idea: use ML + semantics + reasoning to extract metadata that can support 
such automation  

14 

Idea for prototype - machine learning to estimate object drag coefficient 14 

Improve algorithms to better estimate surface air pollution concentrations from satellite 
data 

14 

Improve urban air quality by applying ML to longitudinal data, urban policies and 
interventions and health outcomes 

14 

Is it effective to fuse traditional physics based analysis with machine learning. Is there 
a possibility of a better and unique result than either endmembers alone? 

13 

Machine learning -> transparency in formulation -> adherence to first-order physics? -> 
right answer for the right reason?  

13 

Tell me an example (any science field) of using ML that is successful or well-received 
in the community (knowingly or unknowingly) 

12 

Define benchmark problem that ML can solve that is validated. Structure problem with 
layers of fidelity 

12 



Infrastructure creation: The unified earth data tool create an interface to all global 
raster layers that can be queried, subsetted in space + time and have user supplied 
code applied to generate additional layers, automatically publishing + archiving output 
to database. E.g. users may identify all sources global forests, agriculture fields  

12 

Automatically capture all scientists workflows. Machine learning over those workflows 
can be used to learn parts of workflows that contribute to success or failure 

11 

Leverage ML techniques to look for anomalies in Terra Fusion dataset - arcgis/AWS 11 

Symbolic regression applied to multi-resolution, multi-system data fusion 11 

Develop hardware to allow community to participate in earth science data collection. 
Use data to gain knowledge for decision-making/planning; Data air quality, water 
quality 

10 

Use the language processing services to "hear" what a software user scientist wants to 
do and then propose tools, models, info to help them 

10 

Automatically detect interesting features from proper data feeds, sensor, archive, 
internet etc 

10 

Standardization of remotely sensed data - metadata; opensource 9 

I'd like to see deep learning architecture that can naturally (intentionally, meaningfully) 
incorporate spatial point information 

8 

To create an ML-ready data framework that cuts across disciplines, types, sources 
(internal + external) to help bolster discoveries and reduce the time to science 

6 

Synthetic hyperspectral imaging using MSI + pan to synthesize HIS  

 

  



Appendix D - Raw Notes 

Day 1 - Tech Panel  

Day 2 - User Report Back  
1.     1:41 Greenland – autonomous to eventually send to another planet; Keep itself alive and 
adaptively sample + both unknown and refine models. Challenges – reluctance to accept AI 
system; utility afterward to justify pattern (weird pattern that robot sampled or did robot get 
fixated); Models and science are in discovery how do you separate anomaly detection vs 
instrument breaking; Captured vs new obstacles; Robot optimize sampling while keeping safe + 
diagnostic 
a.     Issue – data volume; downlink data is limited and precious; ML onboard that is large locally 
and smaller that sent down. 
b.     Project so future oriented that don’t know 
c.      Current missions are automated not autonomous. Sending commands every morning; 
80% of time spent planning every automated step 
d.     Q – how do deal with training on Europa – orbiter before rover goes. Mars have good 
training data. 
e.     Q – observed? Mass balance, water storage, 
f.      Robot run local models of hypothesis Challenge – build in models enough you want to 
improve models and opportunities to change 
g.     Certain can be solve today and lots of future learning. 
  
2. 1:52 Surface of Sea Ice – dependent on albedo, high res with lots of data already have ML 
algorithm for classification and have a training dataset with 50,000 segments. System seems to 
be working reasonably well but LOTS more data. Want help with data volume 20 TB up to a PB 
– hitting scale issues and plan to grow exponentially. * How to do data processing to get to 
modeling ? 
Data augmentation – training is manual process of experts classifying? How do we scale to 
better predict ? 
How to scale models on HPC or on cloud? Right now there is a workflow. Have a preprocessing 
routine. How to modularize and create containers use cluster scalers to spin in parallel same 
process 
End goal: Not just sea ice, but meter scale land cover of entire globe 
What model? Rand 4 classifier – feature based classifier ??? imagery features calculated half 
are internal to segment and half are around 
How are you going to do augmentation with feature based calculation? Different model 
  
3. Univ of Houston ~ 1:56 AQ forecasts 
Coverage 70-85% for air pollutant coverage?? 
Current problem – Atmospheric scientist not tech; Data quality problem – remote sensing data 
has uncertainty; training set needs to know quality of data also issue of missing data; Big data 
issues – 400 TB challenges. Ozone, PM2.5 forecasts; magic wand – funding issues; high 



precision modeling system – combine data fusion with model and observation for better 
forecasts; Tech people to design better system.  Questions – what was problem? Missing data 
and don’t know how to deal with missing data? Focus was Air Quality 
  
4. AQ – EarthLab 2:02 
AQ, Roadcover, surface feeding into ensemble machine learning to get surface pm2.5 out at zip 
code level. Using EPA PM2.5 for training data; Useful advice – long and short term memory 
(AOD for day of T-1 as helpful predictor) MERRA 2 and data from Earth on AWS; 
Comment: Interesting to have ensemble of models 
How much data do you have to use? Span of years 2008-2014 by day and 11 western states 
(lat/lon of every pm2.5 during the time) and lat-lon of center of zip code. 
Why 11 western states? Scaling up model originally done from California for the southern; Fire 
situation is different between east and west 
  
5. Grey 2:11 – Hydrology model to estimate floods and droughts  - estimate water on earth with 
100s of variables, 1-10 km spatial. Trivial machine learning is beating the models and means 
there is extra info not being captured in science models. Machine learning regression - Wants to 
combine machine learning + predict where water will be 10 years from now – regression 
models are not reliable for long-term. Allow not have to put in parameters that I don’t 
know and let physical parts of model and constraints that they do know 
Solution: Bayesian network with different nodes and each edge is a neural network that can 
replace with machine learning or parameters 
Combine hydrologist things you do know with power from learning from data 
Q – Ideas on how to solve? Couple of ideas but don’t fully understand one strategy – build mass 
conservation into constraint   
Hook – teach machine learning to understand other kind of classes; codify elements of physical 
model into machine learning 
Q – validation – never be able to evaluate 10 years from now Train on 80’s for 90’s; 90’s on 00’s 
  
6. Chief resilience officer – City of LA Heat 2:14 
Reduce urban/rural heat differential; released resilience strategy Prepare and protect those 
vulnerable to extreme heat – looking at models and built environment exacerbation. City has 
policy goals – veg, tree canopy, soil, roof, cool pavement pilots etc. How to prioritize rolling out 
policy and evaluating the strategy. Do we impact the things we care about? Q – How do we 
measure heat? What are datasets available and how do we get to relationships between heat 
and built environment? 
-       A lot of data out there. How do we access, understand datasets that exist 
-       Missing data (user not aware of data) 
-       Need block by block scale 
Comment – temperature datasets derived from … could help (phil Yang data) 
Sangram – High level tree top canopy; Data Awareness; Data available but not unified and not 
clear what sources are best to answer the questions 
Block by block – need the scale or by category  and then derive by neighborhood? Small 
intervention are at block scale 



  
  
7. City of LA AQ – Global Health 2:20 
Challenge – at a city level challenge of decision making global – forecasting and ML – 
classification 
Goal – improve quality of air to save 4.6 
Unleash power of ml and use nasa data. Get index but don’t know what to do to fix it. 
LA 1 in 10 kids have asthma 
  
Lots of data available – remote, surface, - dense data rich space near LA; Correlation between 
coarse scale remote with surface obs; Esri tools – GIS application and can use AWS. Which 
chemical transport models would be useful? 
ML opps in forecast and classification – how can it be translated to less data rich places 
(chemical and longitudinal studies) to identify sister cities 
Anomaly pattern event detection 
**AOD -> PM2.5 correlation ** major issue across all three AQ groups. 
Change policy to reduce pollution 
  
Q – Asthma – pollution or healthcare. There is correlation between aq and asthma 
  
8. Grounded ice not floating ice ~2:26- How much sea level over next century? What do ice 
sheet do over next century and need models. 
Know enough about inputs, but don’t know about bed topography? Need to have features of 
bedrock right. Can measure from radar along flight lines, but misses in between lines. Need full 
3d model. Need high res (200m horizontal resolution) that model can ingest. Bumps in bed 
should be on surface. Have surface DEM and speed (also good indicator of bed) -> bed 
topography maps 
  
ML prediction and what has been measured 
Q – what kind of assimilation? Not an expert (good feedback) 
Q – Conservation of mass and add some geostatistical characteristic of the bed. Is there 
a way that ML could honor both of those constraints. This works well along coast, but 
interior is less accurate so need other methods. Add to cost function.  Weighting terms 
differently 
  
9. Ute – Cryo ~2:30 
Problem - Acceleration and changes in ice sheets and changes in ice dynamics is largest 
uncertainty in sea level rise IPCC. Changes are not linear. Ice dynamics in remote sensing have 
image, point cloud, altimeter etc . 
Analytic side – data formats/tools and round two table – deep learning – action items: 

1.     Combine physical process with machine learning can take over (which parts of 
scientific problem could be taken over by machine learning and which part is 
physical model – bring two together) efficiency of ML Transferability from one system to 
another 



2.     Supervised vs. unsupervised classification 
3.     Test different types of ml algorithm; differences in complexity 
4.     Different methods on different components 
5.     Role of data fusion 
6.     Validation – data coming in to validate new systems 
  

 Day 3 - Proposals    
Proposals described above were summarized and the obstacles and technology gaps 
discovered were identified. 


