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Abstract - In Mars rover missions, a high degree of 

accuracy in localization of the rover and mapping of the 
surrounding terrain is of fundamental importance for safe 
rover navigation and for achievement of scientific and 
engineering goals. In the Mars Exploration Rover (MER) 
2003 mission, ground image-based incremental bundle 
adjustment (BA) technology has been performed on Earth to 
correct rover position errors caused by wheel slippage, 
azimuthal angle drift and other navigation errors. Key to the 
success of the BA is selection of a sufficient number of well-
distributed tie points to link the ground images into an image 
network. Although tie-point selection at one rover site can be 
automated, much of the cross-site tie-point selection is 
performed manually during MER mission operations.  

We are developing an innovative method to automate 
cross-site tie-point selection so that rover localization can be 
autonomously performed onboard the rover. This new 
method consists of algorithms for rock extraction, rock 
modeling, and rock matching from multiple rover sites. 
Rocks are extracted from 3D ground points generated by 
stereo image matching, and then modeled using analytical 
surface models including the hemispheroid, semi-ellipsoid, 
cone and tetrahedron. Rocks extracted and modeled from 
two adjacent rover sites are matched by a combination of 
rock-model matching and rock-distribution-pattern 
matching. Initial test results using MER data show that the 
proposed method is effective for medium-range (up to 26m) 
traverse segments. We are currently testing our software 
using data acquired in January, 2007 during a field test at 
Silver Lake, CA. The onboard incremental BA technology we 
are developing will be integrated with JPL’s visual odometry 
technology to achieve long-range autonomous rover 
localization. 

I. INTRODUCTION 

In the current Mars Exploration Rover (MER) 2003 
mission and the future Mars Science Laboratory (MSL) 
2009 mission, highly accurate determination of rover 
position and attitude information is very important both for 
safe rover navigation and for achievement of mission 
science and engineering goals [1][2][3]. Different 
positioning methodologies have been researched for 
mobile robot localization and navigation. These include 
dead-reckoning (odometry and inertial navigation) and 

reference-based technologies such as the Global 
Positioning System (GPS), landmark navigation and model 
(map) matching [4]. However, some technologies cannot 
be applied directly to the Martian environment because of 
the unavailability of, e.g., GPS on Mars and limitations in 
payload and power.  

Planetary rover localization research has been carried 
out at the Jet Propulsion Laboratory (JPL) using several 
advanced methods including position and heading 
estimation by remote viewing of a colored cylindrical 
target [5], maximum-likelihood matching of range maps 
[6], and visual odometry (VO) algorithms [7]. The 
Robotics Institute at Carnegie Mellon University (CMU) 
has designed and developed various robotic systems and 
vehicles for industry and military applications. Field 
experiments performed in recent years achieved a 
localization accuracy of 3-to-5 percent of distance traveled 
based on a dead-reckoning technology that integrated 
wheel encoders and roll and pitch inclinometers with a 
yaw gyro [8]. The Centre National d'Etudes Spatiales is 
also developing Mars rover autonomous navigation 
technology based on IMU (Inertial Measurement Unit), 
odometry and stereo vision [9]. The Mapping and GIS 
Laboratory at The Ohio State University (OSU), in 
collaboration with the JPL’ Computer Vision Group, has 
developed a bundle adjustment (BA) method for long-
range Mars rover localization using descent and rover 
images [2] [10]. 

In the Mars Pathfinder (MPF) 1997 mission, the rover 
Sojourner achieved an overall localization error of about 
10% of the distance from the lander within an area of 
about 10x10 meters using dead-reckoning technology [11]. 
In the MER mission, the designed accuracy of 10% has 
been achieved by combining wheel odometry, a sun 
finding technique using rover images, and IMU to estimate 
rover positions and attitudes. The combined onboard VO 
and Earth-based BA method is capable of correcting 
position errors caused by wheel slippage, azimuthal angle 
drift and other navigation errors as large as the 21% error 
experienced within Eagle Crater (Meridiani Planum 



landing site) and the 10.5% error found in the Husband 
Hill area (Gusev Crater landing site) [3] [12] [13] [14]. 
The Spirit rover has achieved an accuracy of 0.5% over a 
6km traverse using this integrated VO and BA method. 
Key to the success of this method is selection of a 
sufficient number of well-distributed tie points to link the 
ground images into an image network. Although tie-point 
selection at one rover site has been automated, much of the 
cross-site tie-point selection is performed manually during 
MER mission operations. 

This paper introduces the key component of autonomous 
BA operations, a new approach to cross-site tie-point 
selection based on rock extraction, rock modeling, and 
rock matching. Recent results of cross-site tie-point 
selection using MER and field test data are included. 

II. AUTOMATIC CROSS-SITE TIE-POINT SELECTION FOR 
AUTONOMOUS MARS ROVER LOCIZATION 

The concept and design of the new approach to 
autonomous long-range Mars rover localization based on 
integrated BA and VO methods are discussed in 
[15][16][17] in detail. The success of automatic long-range 
rover localization depends on the automation of VO and 
BA performed onboard the rover. In the MER mission, the 
onboard VO has worked successfully. Although automatic 
selection of the tie points at one site has been effectively 
performed on a routine basis [14] [18], the automatic, 
Earth-based BA has been limited by the challenge of 
automatic selection of cross-site tie points where objects 
(e.g., rocks) used as tie points look significantly different 
when viewed from different angles, especially in forward- 
versus backward-looking views.  Therefore, it is crucial to 
develop cross-site tie-point selection algorithms for 
automatic selection of a sufficient number of high quality 
tie points to link all the images and to form an image 
network. 

Across the Martian terrain, rocks are the major features 
shown in the rover images. It is desirable to extract, model 
and match rocks shown in ground images from multiple 
viewpoints so that they can serve as cross-site tie points. 
Existing rock-detection methods are aimed at detecting and 
modeling most of the rocks suitable for autonomous 
geological analysis. Gor et al. [19] developed a rock-
detection method that uses image intensity information to 
detect small rocks and range information to detect large 
rocks from Mars rover images. Using this method, the 
shape of the extracted large rocks is modeled by metrics 
such as eccentricity, ellipse error, 2D sphericity, and 2D 
angularity [20]. CMU researchers developed a rock-
detection method based on segmentation, detection, and 
classification using texture, color, shape, shading, and 
stereo data from the Zoë rover [21]. They also developed a 
multiple-view detection method.  

 
Fig. 1. Diagram of automatic cross-site tie-point selection. 

Fig. 1 shows the OSU approach to cross-site tie-point 
selection based on rock modeling and rock matching. In 
this approach, rocks are detected using peak and surface 
point information extracted from dense numbers of ground 
points generated from stereo images acquired at each site. 
After detection, a number of analytical surface models, 
such as cone and spheroid, are used to fit the rock. Each 
rock is represented by a surface model that best fits the 
extracted rock surface points. After rock modeling, 
matching of rocks from two sites are further carried out by 
a comparison of individual rock models as well as of the 
two global rock (peak) distribution patterns from the two 
sites. Finally, the matched rock peaks are utilized to link 
rover images and to build the image network. More details 
on rock extraction, modeling, and matching are given in 
the next few subsections. 

A. Rock Extraction 

1) Extraction of Rock Peaks: Rock peaks are extracted 
as local maxima from the densely distributed ground 
points. These three-dimensional ground points result from 
two steps in image matching: interest-point matching and 
dense image-point matching. Interest points are usually 
terrain features such as rock peaks, sharp corners, and 
ridge points. They are extracted from stereo images at each 
site using a Förstner interest operator. Cross-correlation is 
used to match these extracted interest points, which are 
then further refined by verification of parallax consistency 
and outlier elimination [14] [18]. In order to obtain enough 
surface points for most of the extracted rocks, a TIN 
(triangulated irregular network)-based dense image 
matching is performed for each stereo image pair to 
improve the terrain model. This is performed using either a 
3×3 or a 5×5 grid size. After dense matching, dense 3D 
ground points are calculated through spatial intersection of 
conjugate image points.  

2) Extraction of Rock Surface Points: Rock surface 
points are needed in addition to the rock peak in order to 
fit an analytical rock model to and describe the size of any 
rock. Starting from the rock peak, a 3D plane is estimated 
using those terrain points within an area of either 
70cm×70cm or 2m×2m from the rock peak, with the 
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horizontal distance depending on the distance from the 
rock peak to the camera center. The initial rock height H is 
calculated as the perpendicular distance from the peak to 
the fitted plane. Surface points are searched for iteratively 
among the candidate points above the fitted plane using a 
dynamic search range. Fig. 2 gives examples of the 
extracted rock peaks and surface points for rocks with 
different sizes and shapes. Green dots show the rock peaks, 
and red dots show the extracted surface points.  

 
Fig. 2. Examples of extracted rock peaks (green dots) and rock surface 

points (red dots) for six different rocks. 

The above method was successfully applied to extract 
the peaks and surface points for various types of rocks 
found about 20 m from the rover. These include large 
rocks of approximately 0.5m in height. The rock extraction 
algorithm met difficulties when dealing with a rock 
complex where a number of rocks stand closely together so 
that severe occlusions block some rock peaks and surface 
points. However, as long as a sufficient number of rocks 
can be extracted and matched between two sites, the 
incremental BA can be achieved. 

B. Rock Modeling 

Assuming that a rock is symmetric based on the rock 
peak and the surface points extracted from the side visible 
to the camera, we can model it using a 3D analytical 
surface model (hemispheroid, semi-ellipsoid, cone, or 
tetrahedron). More information about the modeling 
equation, linearization, and least-squares solution can be 
found in [17]. To evaluate the fitting accuracy of each 
model for a particular rock, an RMS error is calculated 
from the differences of height z of the surface points, that 
is 

( )
n

zz
RMS elii

2
mod,−

=  (1) 

where zi is the height value of the ith surface point, and zi, 

model is the height value calculated from the fitted model.  
 

Table I  
Estimated model parameters and RMS errors of rocks in Fig. 2 

 

 
Table I gives the estimated model parameters as well as 

the associated RMS errors of the best-fitting models (those 

with the minimum RMS error among the four models) for 
the six rocks in Fig. 2. In this table, the parameter r is the 
radius of the hemispheroid, the radius of the bottom circle 
of the cone, or the radius of the enclosing circle of the 
bottom triangle of the tetrahedron, depending on the case. 
The variables a and b are the semi-major and semi-minor 
axes of the semi-ellipsoid, h is rock height, and φ is the 
orientation angle of the bottom triangle of the tetrahedron. 

To verify the rock modeling results, we compared the 
modeled parameters with the ground truth (manual 
measurements from stereo images) of 79 rocks in the area 
between two adjacent sites at the Spirit landing site that are 
26m apart. For each rock, four metrics were compared: 
height, radius, surface area, and volume. On the average, 
the relative difference between modeled and ground truth 
measurements was 25.1%, 43.7%, 57.1%, and 103.4% in 
height, radius, surface area, and volume, respectively. 
Additional details of this comparison are show in [17]. It is 
obvious that among the four metrics, height is the most 
reliable and, therefore, the most comparable parameter. 
The very high difference in volume suggests that it should 
not be used for comparison. This verification result is 
important for designing the following rock-matching 
algorithm with various models. 

C. Rock Matching 

Rock matching is where this approach determines which 
corresponding rocks can serve as tie points between two 
consecutive sites. Difficulties in rock matching are caused 
by visibility and/or occlusion, reliability of the rock 
modeling, and the stereo ranging capability [17].  

Rock matching goes through two stages: pattern 
matching, which considers the global offset between the 
distribution of two sets of rocks from two sites, and model 
matching, which is the comparison of a single rock’s 
individual similarity with potential corresponding rocks 
from the adjacent site.   

Pattern matching compares the two geometric 
distributions of rock peaks from the adjacent sites. In 
principle, a rigid transformation including three rotations 
and a 3D translation can depict the relationship between 
two corresponding rock distribution patterns derived from 
the two sites. Based on extensive experiments using Spirit 
rover data, it was found that the rotational differences are 
insignificant. Consequently, a 3D translation is employed 
in rock-pattern matching. This makes the pattern matching 
process computationally more efficient.  

For rock-model matching, a set of extracted candidate 
rocks at the adjacent site are individually compared with 
each significant rock extracted at the current site using the 
objective function 

ID r/a 
(cm) 

b 
(cm) 

h 
(cm) 

φ 
(radians) 

RMS 
(cm) 

Model  Type 

1 40.7 29.2 22.8  3.8 Ellipsoid 
2 8.3  8.3 0.5 0.9 Tetrahedron 
3 32  28.1 1.3 5.8 Tetrahedron 
4 15.4  15.6  0.2 Hemispheroid 
5 24.1  27.4  3.9 Cone 
6 41.6  21.6 1.06 3 Tetrahedron 



Z = c1f1 + c2f2 + c3f3  (2) 

where f1, f2, and f3 are the relative differences (in 
percentage) of height, radius, and surface area between the 
two rocks calculated from the two rock models. The 
coefficients c1, c2, and c3 are the relevant weights, which 
are set to 1/2, 1/3, and 1/6 based on the results of the rock 
model verification described above. The most comparable 
parameter height is given the largest weight here. The rock 
of the adjacent site with the minimum value of Z in Eq. 2 
is considered a match. 

In both rock-pattern matching and rock-model matching, 
there are cases of multiple matches, i.e., when a rock from 
one site has more than one corresponding rock candidate 
from the other site. To eliminate multiple matches, only 
the one “best” match is kept. This would be the match that 
generates the maximum count in rock-pattern matching, or 
the match with the minimum objective function value in 
rock-model matching. The final matching results are the 
combination of the outputs of the two methods. Only the 
rocks that pass both matching methods are considered to 
be matched rock pairs, i.e., the rock at one site is matched 
with a rock at other site both in pattern matching and 
model matching.  

D. Fault Detection 

In the process of cross-site tie-point selection, a fault 
detection algorithm is applied in order to assure that the 
software system mitigates failures and meets the needs for 
long-range rover localization. The cross-site tie-point 
selection software system should determine a fault if the 
traverse leg length is too long (>30m for Navcam), if the 
number of rocks extracted in the overlapping area is 
insufficient, if the number of extracted significant rocks is 
insufficient, or if there are too few rocks in the final 
matching result. The strategy has been applied and verified 
using MER Spirit data and Silver Lake field test data. In 
the future, additional situations will be considered and 
added to the strategy. Also, the theory of fault detection 
based on the statistic analysis is being developed and 
tested. 

III. RESULTS 

The developed cross-site tie-point selection method has 
been extensively tested using MER data acquired by the 
Spirit rover. Furthermore, we conducted a field test at 
Silver Lake, CA in January 2007. Along this 5.5km 
traverse, VO images were taken continuously at a rate of 
0.5 frames per second and BA panoramic images were 
taken at the ends of traverse segments (typically 20~30 
meters). Differential GPS (DGPS) was employed to 
measure the rover positions at a data rate of 2Hz, which 
matches the VO image acquisition rate. The DGPS-

determined rover positions will be used as ground truth to 
evaluate the localization accuracy of VO and BA and their 
integration. We are currently testing our software using the 
field test data. 

Fig. 3 shows an example of rock peaks automatically 
extracted from MER Navcam images for cross-site tie-
point selection. The two sites from the Spirit rover landing 
site, 9600 and 9700, are 26m apart. There are 37 peaks 
extracted from Site 9600 (green triangles) and 34 from Site 
9700 (red triangles) shown. The location of the rover 
location at sites 9600 and 9700 are marked as dots. Fig. 4 
gives the 7 correct matching result of this test pairs. Fig. 5 
also shows the 7 matched rocks on the image mosaics of 
sites 9600 and 9700.  

Fig. 6 gives another example of the tie points 
automatically selected using images acquired at the Silver 
Lake field test. These two sites are sites Tue-am-2b-10 and 
Tue-am-2b-09 (16m apart) 

 

 
 

Fig. 3. Peaks extracted from two Spirit rover sites, 9600 and 9700. 
 

 
 

Fig. 4. Automatically matched rocks selected as cross-site tie points at 
MER Spirit rover sites 9600 and 9700 (labeled with the same 

identification numbers). 
 
 



 

 
Fig. 5. Automatically matched rocks (tie points) shown on the image 

mosaics of sites 9600 and 9700 (labeled with the same identification 
numbers). 

 

 
Fig. 6. Automatically matched rocks (tie points) shown on the image 

mosaics of two adjacent panoramas at the Silver Lake test sites (labeled 
with the same identification numbers). 

IV. CONCLUSIONS AND FUTURE RESEARCH 

Automatic tie-point selection is a key process for 
implementing the proposed autonomous Mars rover 
localization method. This process is realized by rock 
extraction, rock modeling, and rock matching using images 
acquired at multiple rover sites. To eliminate potential 
mismatches in rock matching, the complementary rock-
model and rock-pattern matching methods can be 
employed. Also, fault detection strategies based on statistic 
analysis of the test data are being developed and tested. 
Test results using MER data show that the proposed 
method is effective for medium-range (up to 26m) traverse 
segments. Currently, we are testing our software using data 
acquired during a recent field test at Silver Lake, CA. The 
achieved cross-site tie-point selection results will be used 
in the onboard integration of BA and VO methods for 
long-range autonomous rover localization.  
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