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Abstract—The Laser Interferometer Space Antenna (LISA) is
a joint effort of NASA and the European Space Agency (ESA) to
build and operate a space-based detector of gravitational waves.
Along with ground-based observatories, LISA will launch the
new field of gravitational wave astronomy, which promises to
provide important insights in many areas of astronomy and
cosmology. LISA will consist of a constellation of three satellites
in a triangular configuration five million kilometers on a side.
Laser interferometry will be used to monitor changes in the
distance between the satellites at a level of 10 pm/

√
Hz in

an effort to detect small fluctuations induced by gravitational
waves. Achieving such precise distance measurements over large
distances requires a number of novel measurement techniques
and technologies. Our group at the University of Florida is
developing UFLIS (the University of Florida LISA Interferometry
Simulator), a laboratory model which faithfully reproduces most
aspects of the LISA interferometer. UFLIS is being used to study
various aspects of LISA interferometry ranging from general
measurement techniques to specific hardware implementations.
In this paper we describe UFLIS in general with an emphasis
on the technology we have developed. This work is supported by
NASA/OSS grant BEFS04-0019-0019.

I. GRAVITATIONAL WAVES AND THEIR DETECTION

Nearly a century ago, Einstein recognized a wave solution
to his equations of General Relativity in vacuum. Over the
intervening decades, much theoretical work has deepened our
understanding of these solutions, known as gravitational waves
(GWs). The gravitational analog to electromagnetic radiation,
GWs are disturbances in space-time which propagate through
the universe at the speed of light. They are generated in some
of the most violent and interesting events in our universe:
colliding black holes and neutron stars, supernovae, and the
Big Bang. For many astrophysical systems, GWs play a role
that is at least as important as electromagnetic radiation. The
observation of GWs will likely provide new insights in many
fields of astronomy and astrophysics [1].

Figure 1. Tidal distortions cased by a “+ polarized” GW propagating normal
to the figure plane

GWs may be observed by detecting the minute tidal distor-
tions they cause in our local spacetime. Figure 1 shows the
effect of a GW passing through an initially-circular ring of
freely-falling test particles. The GW is propagating normal to
the plane of the figure and φGW refers to the GW phase.
The amplitude of a GW is characterized by its strain, a
dimensionless number describing the change in displacement
between two test-particles over their initial displacement. For
typical astrophysical sources of GWs, the strains at Earth are
expected to be on the order of 10−21.

Generally speaking, there are two primary challenges in
direct GW detection. The first is build test masses that are
sufficiently isolated from their environment so that the distur-
bances caused by GWs are not overwhelmed by non-inertial
forces. The second is to measure the distance between these
masses with enough precision to resolve the small distortions
caused by the GWs.

II. LISA

Like electromagnetic waves, expected GW sources span a
large spectrum of frequencies. Accessing all of the interesting
frequency bands will require the construction of a number of
different types of GW detectors. Current and future ground-
based detectors [2] will be limited to high frequency GWs
(fGW & 10 Hz) due to the interference caused by Earth’s
fluctuating gravitational field. Observing the many interesting
low-frequency sources will require a space-based gravitational
wave detector.

The Laser Interferometer Space Antenna (LISA), is a joint
NASA/ESA mission with the goal of studying GWs in the
10−4 Hz ≤ fGW ≤ 10−1 Hz frequency band [3]. Target
sources include colliding super-massive black holes in distant
galaxies, binary compact objects in our own galaxy, and the
capture of small compact objects by super-massive black holes.
The LISA mission concept calls for placing three separate
spacecraft (SC) in a set of heliocentric orbits such that they
form a giant triangular constellation approximately 5× 109 m
on a side, as depicted in Figure 2. Each SC will carry a
pair of freely-floating proof masses surrounded by electrostatic
sensors. These sensors will provide an input to a control
system that fires miniature thrusters on the spacecraft to ensure
that the SC remains centered around the proof masses [4].
Roughly speaking, the SC provides a shield from outside
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disturbances so that the proof masses closely approximate the
inertial test particles in Figure 1.

Figure 2. The LISA orbital configuration. (Courtesy NASA)

In order to detect GWs, changes in the distance between
the proof masses must be measured at a level of roughly
10 pm/

√
Hz ( 5 · 109 m× 10−21 ≈ 10 pm).

Laser interferometry is a measurement technique which
is ideal for measuring such small distances. In traditional
interferometers, a single light source is split into two nearly
equal paths and then recombined on a single detector. In
this arrangement, the phase noise of the laser light source is
common to both arms and is not measured at the detector. The
LISA interferometer differs from a traditional interferometer in
that it uses six separate light sources and eighteen independent
measurement points. The signals from these measurement
points are then combined electronically to produce measure-
ment channels that have the noise-suppression properties of a
traditional interferometer.

Figure 3 shows a diagram of the LISA interferometer.
The three SC are labeled SCi and lie on the vertices of
an approximately-equilateral triangle. Each SC contains two
optical benches (OBs) consisting of a proof mass, laser, and
photoreceiver. In Figure 3, OBij refers to the OB on SCi

oriented towards SCj . The distances between the SC are
denoted by τij , the time for a photon to travel from SCi

to SCj . In addition to the free-space links between the SC,
the two OBs on each SC are connected via an optical fiber.

Figure 3. Schematic diagram of the LISA interferometer. (SC = spacecraft,
OB = optical bench, τij = light travel time between SCi and SCj )

One possible layout of the the optical bench is depicted in
Figure 4. At each of the three photodiodes (PDs), a pair of
laser beams is interfered, producing a signal of the form

P (t) ∝ sin[2π∆νt + ∆φ(t)], (1)

where P (t) is the power on the photodiode, ∆ν is the
frequency difference between the two laser beams, and ∆φ(t)
is the phase difference between the two laser beams. The pho-
todiode signal is connected to a device known as a phasemeter
which extracts ∆φ(t) from the signal1.

Figure 4. Diagram of a LISA optical bench. Light from the local laser (red)
enters from the fiber coupler on the bottom, light from the adjacent optical
bench (blue) enters from the left, and light from the far spacecraft (green)
enters from the right.

A pair of local interferometers are used to measure the
relative motion between the proof mass and the OB. PDback2

measures the phase difference between the local laser and
the laser from the adjacent OB. PDback1 makes the same
measurement, with the slight difference that the local beam is

1Note that there is an equivalency between phase and frequency which
allows for all time-variation in the signal to be placed in ∆φ(t) while allowing
∆ν to be chosen as an arbitrary constant.
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reflected off of the proof mass. By differencing the phasemeter
signals from PDback1 and PDback2, the relative motion
between the proof mass and OB can be measured. Key
to the success of this measurement is a phasemeter with
sufficient dynamic range to capture the laser phase noise on
the individual PDs while still providing enough resolution to
resolve length changes of 10 pm/

√
Hz.

A. Time-Delay Interferometry
Relative motion between the OBs on separate SC is mea-

sured using PDmain, which compares the local laser beam
with an incoming beam from the far SC. The phasemeter
output from PDmain on OBij is

Sij(t) = φij(t)− φji(t− τji) + hji(t), (2)

where φij(t) is the phase noise of the laser on OBij and hij(t)
is the accumulated phase due to GWs for a beam traveling
from SCi to SCj . Since the two laser phase noise terms are
uncorrelated, they will not cancel and hence will dominate
the phasemeter output, obscuring the GW signal. However,
it is possible to form combinations of Sij(t) from different
optical benches with appropriate time delays that do cancel the
laser phase noise and reveal the GW signals. This technique
is known as time-delay interferometry (TDI) [5].

As an example of TDI, consider the simplified case where
the signals Sj1(t) are used as error signals in a phase-lock
loop that adjusts the phase φj1(t). For high gains, Sj1(t) ≈ 0
and consequently

φji(t) ≈ φ1j(t− τ1j) + hj1(t). (3)

In other words, SC2 and SC3 act as transponders: repeating
the phase of the incoming signal from SC1. The phasemeter
signals at SC1 are then

S1j(t) = φ1j(t)−φ1j(t−τ1j−τj1)+h(t−τj1)+hj1(t). (4)

An additional simplification can be made by phase-locking
the two lasers on SC1 using the two PDback2 signals. The
phasemeter output from PDback2 on each bench will contian
the difference in laser phases, ∆φ1(t) ≡ φ12(t)−φ13(t), plus
a phase noise, η(t), added by the optical fiber link. ∆φ1(t) will
appear with opposite signs on the two optical benches while
η(t) will have the same sign. Differencing the two phasemeter
signals will result in a signal proportional to ∆φ1(t) with no
contribution from η(t). This signal can be used as an error
signal in a phase-lock loop which adjusts the phase of φ13(t).
Under the assumption of high gain, this implies

φ13(t) ≈ φ12(t) ≡ φ(t). (5)

This is analogous to a beamsplitter producing two coherent
beams for each optical bench. The signals S1j(t) can then be
combined to form the ’Michelson X’ TDI combination,

X(t) ≡ S12(t)−S13(t)−S12(t−τ13−τ31)+S13(t−τ12−τ21).
(6)

Substituting (4) into (6) gives

X(t) = h21(t)− h31(t) + h12(t− τ21)− h13(t− τ31)
−h21(t− τ13 − τ31) + h31(t− τ12 − τ21)
−h12(t− τ21 − τ13 − τ31) + h31(t− τ12 − τ31).(7)

There are no contributions from laser phase noise in X(t).
Physically, this is equivalent to the situation in an equal-arm
Michelson interferometer. It should be noted that the phase
lock loops implied in equations (3) and (5) are not critical
to the success of TDI. It is possible to form a more-general
expression for X(t) using the Sji(t) signals and the PDback1

signals that does not require any PLLs.

B. Pre-Stabilization and Arm-Locking

In principle, the cancellation of laser phase noise in (7)
is perfect, placing no constraints on the performance of the
lasers. In practice, the cancellation is only approximate due
to such effects as length changes in the arms due to orbital
motion, errors in determining the arm-length, and errors in
generating time-delayed copies of the phasemeter signals.
These effects allow some laser phase noise to enter the TDI
channels. With unstabilized lasers, the post-TDI residuals are
too large to permit detection of GWs, therefore it is necessary
to actively stabilize the phase (or frequency) of the lasers prior
to forming the TDI combinations.

LISA will stabilize its lasers in two stages. The first stage,
called pre-stabilization, utilizes a high-finesse optical cavity
as a frequency reference. Standard locking techniques, such
as the RF demodulation technique known as Pound-Drever-
Hall locking [6], can be used to transfer the length stability of
the cavity spacer to frequency stability of the laser. The per-
formance of the pre-stabilization system is ultimately limited
by the length stability of the cavity spacer. Using ultra-stable
materials in a thermally-stabilized environment, it is expected
that the pre-stabilization will provide a frequency stability of
roughly 10 Hz/

√
Hz in the LISA measurement band [7].

Improvement upon the pre-stabiliztion requires a length or
frequency reference with better stability than the optical cavity
spacer. The arms of the LISA constellation fit this description
in the frequency band of interest (& 10−4 Hz). Arm-locking
[8] is a techniuqe where by the laser is stabilized to one or
more of the LISA arms.

In its simplest incarnation, single-arm arm-locking, one
laser is stabilized to a single arm. As an example, consider
the laser on OB12 and let the phase-lock condition in (3) be
applied on OB21. The phasemeter signal at PDmain on OB12

is given by (4), which we can re-write as

S(t) = φ(t)− φ(t− τRT ), (8)

where τRT ≡ τ12 + τ21 is the round-trip light travel time
between SC1 and SC2, the small GW contributions have been
dropped, and the ij indices have been dropped for clarity. The
sensitivity of S(t) to variations in laser phase will depend on
the frequency of the variation. A sinusoidal variation in phase
with a frequency of n/τRT , n ∈ 1, 2, 3 . . . will not produce
a change in S(t). Similarly, a sinusoidal phase variation with
a frequency of (n + 1

2 )/τRT , n ∈ 1, 2, 3 . . . will produce a
signal in S(t) with an amplitude twice that of the original
variation. This is more easily seen by expressing (8) in the
Fourier domain,

S̃(f) = φ̃(f) · [1 + exp(−2πifτ)], (9)
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where S̃(f) and φ̃(f) are the Fourier transforms of S(t)
and φ(t), and f is the Fourier frequency. A Bode plot of
S̃(f)/φ̃(f), the “error signal transfer function”, is shown in
Figure 5. The error signal goes to zero at Fourier frequencies
fn ≡ n/τRT . As it approaches these same frequencies, the
phase of the error signal transfer function approaches −90◦.
When coupled with the −90◦ phase response of the laser phase
actuator, these points amount to sign changes in the error
signal. In the language of control theory, they are marginally-
stable points and in practice will cause a control system
utilizing this error signal to be unstable.

Figure 5. Bode plot of single-arm arm-locking error signal transfer function

The standard practice for dealing with such instabilities is to
ensure that the control system has no gain at these frequencies.
Unfortunately for arm-locking, the instabilities lie in the LISA
band, precisely where gain is needed. The resolution to this
problem comes in utilizing a controller2 that has a frequency
response of the form

G(f) = G0(2πif)p, (10)

where G0 is an overall gain factor and p is a coefficient in the
range 0.2 . p . 0.8, in the vicinity of the instability points.
This controller will provide a “phase advance” at f = fn,
allowing the system to remain stable. At other frequencies,
notably for f < f1, the coefficient p can become negative,
providing improved noise suppression. The closed-loop noise
suppression for an arm-locking system is shown schematically
in Figure 6. For frequencies below f1, there is large noise
suppression. As f approaches f1, the noise increases and
actually exceeds the input noise (a condition known as noise
enhancement) for a brief period before entering a second noise
suppression region. This pattern repeats at each fn until the
unity-gain frequency, the maximum frequency at which the
control loop is active, is reached.

It should be noted that the curve shown in Figure 6 is
only qualitative, for realistic arm-locking systems, the noise

2In some of the literature, the laser actuator, which has an integrator
response of the form (2πif)−1, is absorbed into the controller response.
Here we treat the controller and actuators as separate components.

enhancement spikes will be narrower, the noise suppression re-
gions deeper, and the unity-gain frequency higher. While arm-
locking does not suppress noise at all-frequencies, it greatly
improves the frequency stability in large frequency bands. In
actual practice, LISA will probably utilize more complex arm-
locking schemes involving multiple arms. These schemes will
allow the noise spikes to be moved to higher frequencies,
providing consistent stability in the LISA measurement band.

Figure 6. Qualitative depiction of closed-loop noise suppression for an arm-
locking system. f1 = f/τRT , fUG= unity gain frequency.

III. UFLIS

The “one-shot” nature of space-based instruments makes the
pre-flight validation of measurement techniques and technolo-
gies an extremely important aspect of the mission. Such pre-
flight testing is especially challenging for LISA due to the fact
that the large size of the constellation is an essential feature of
the mission. While most of the individual components can be
verified in compartmentalized tests, system-level technologies
such as TDI and arm-locking need to be verified on a model
of the complete interferometer. At the University of Florida, a
group of researchers are developing a hardware-based model
know as the University of Florida LISA Interferometry Simu-
lator (UFLIS). The goal of UFLIS is to create a system with
signals that have transfer functions and noise characteristics
that are similar to those found in LISA [9], [10], [11].

For the most part, UFLIS replicates the LISA interferometer
using a one-to-one correspondence between parts. The lasers,
phasemeters, and control systems are similar to those that will
be used in LISA. The large inter-SC distance is modeled using
a technique called Electronic Phase Delay (EPD), which uses a
digital delay line to delay a signal containing LISA-like noise
[12]. An example of the EPD technique applied to a single
LISA arm is shown in Figure 7.

Figure 7(a) shows a model of a LISA arm. Laser L1,
onboard SC1, produces a light field with frequency ν1 and
phase φ1(t) which propagates to SC2 and experiences a delay
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(a) LISA

(b) EPD Model

Figure 7. The EPD technique applied to a single LISA arm

τ . Upon arrival on SC2, it is interfered with the local laser on
the optical bench, L2, producing a signal with a frequency

νLISA = ν2 − ν1 − νDoppler, (11)

where νDoppler is the Doppler shift. The phase of the signal
will be

φLISA(t) = φ2(t)− φ1(t− τ), (12)

where the small phase shifts due to GWs have been ignored.
The EPD model of Figure 7(a) is shown in Figure 7(b). Two
identical, uncorrelated lasers, L1 and L0, are interfered at a
photodiode, producing a beat signal with a frequency ν10 =
ν1−ν0 and a phase φ10(t) = φ1(t)−φ0(t). If the noise spectra
of L1 and L0 are identical and uncorrelated, the phase noise
of the beat note will approximately equal that of L1,

φ̃10(f) =
√

φ̃2
1(f) + φ̃2

0(f) ≈ φ̃1(f), φ̃0(f) . φ̃1(f). (13)

In the EPD model, the L1 − L0 beat note represents L1 in
LISA. The noise spectra of the two signals are the same, the
only difference being that the EPD signal is at a much lower
frequency and can be easily converted to an electronic signal.

The next step in the EPD model is to measure the L1−L0

beat note and store it in a delay buffer for a time τ to model the
light propagation between the SC. Additionally, it is possible
to add a frequency shift to the signal, mimicking the Doppler
effect present in LISA. The output of the EPD unit is a signal
with frequency ν10 +νDoppler and phase φ10(t− τ). The next
step is to model the local laser onboard SC2. This is done by
making a beat note between a third laser, L2, and the reference
laser, L0. In principle the reference laser could be an entirely
separate laser but for convenience, the same laser is used. This
produces a beat signal with frequency ν20 and phase φ20. This
signal is then electronically mixed with the output of the EPD
unit. After low-pass filtering to remove high-frequency terms,
the output of the mixer is a signal with frequency

νEPD = ν20 − ν10 − νDoppler (14)

and phase

φEPD(t) = φ20(t)− φ10(t− τ). (15)

So long as the laser phase noise remains uncorrelated and
φ̃0(f) is sufficiently small, (14) and (15) have exactly the
same characteristics as (11) and (12).

The EPD model of a single arm can easily be extended
to model the entire LISA constellation. Figure 8 shows the
current optical layout of UFLIS [10]. Two lasers, L1 and
L0 are stabilized to ultra-stable optical cavities placed in a
thermally-isolated vacuum chamber. The residual phase noise
of these lasers meets the LISA pre-stabilization requirement.
Two additional lasers, L2 and L3 allow the modeling of
the LISA arms. Each laser is interferred with L0, producing
an electronic beat signal which can be used to model a
LISA laser. This allows the study of arm-locking, various
TDI combinations, and verification of components such as
phasemeters.

Figure 8. Optical layout of UFLIS, L0 is the reference laser, L1-L3 represent
the LISA lasers, and PDij are beat notes between Li and Lj .

IV. UFLIS TECHNOLOGY

The development of UFLIS necessitated the development of
a number of technologies, some of which are also common to
LISA and others which are unique to the modeling technique.

A. Phasemeters

As described in section II, the phasemeter is a critical
component in the LISA interferometric measurement system.
In order to resolve the phase changes induced by GWs on
the optical beat signals, it must be able to measure the phase
of the beat signal with an accuracy of ∼ 10−6 cycles/

√
Hz.

This accuracy must be achieved in the presence of laser phase
noise with an RMS phase noise of greater than 106 cycles in
the LISA band. In addition, the frequency of the beat signals
will slowly vary by as much as 10 MHz due to the Doppler
shifts induced by orbital motion.

The current design for both the LISA phasemeter [13] and
the UFLIS phasemeter [11] is an in-phase/quadrature (I/Q)
demodulation phasemeter with a tracking local oscillator (LO).
A schematic of such a system is shown in Figure 9. The
input signal, a sinusoid with amplitude Ai(t), frequency νi,
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and phase φi(t), enters from the top left and is multiplied
by both quadratures of a local reference oscillator (LO), with
unit amplitude, frequency νm, and phase φm(t). Without loss
of generality, we can assume that νm = νi and place all
differences between the input signal and LO in the phase
terms. The outputs of the two multipliers is low-pass filtered to
remove harmonics at 2νi and scaled by a factor of 2, resulting
in the signals

I(t) = Ai(t) cos [φi(t)− φm(t)] (16)

and
Q(t) = Ai(t) sin [φi(t)− φm(t)] . (17)

These signals can be used to extract both the amplitude and
the phase of the incoming signal,

Ai(t) =
√

I(t)2 + Q(t)2 (18)

and
φi(t) = arctan [Q(t)/I(t)] . (19)

The last relationship will only unambiguously resolve the
phase if it can be ensured that |φi(t)− φm(t)| ≤ 1

2 cycle.
For the large phase noises present in the LISA beat signals,
φi(t) will change by ∼ 106 cycles, making it impossible to
extract usin (19). The solution is to adjust the phase of the
LO to ensure than the residual phase, φr(t) ≡ φi(t)− φm(t),
remains within ± 1

2 cycle. This can be done by using φr as
the error signal in a phase lock loop with a feedback gain
H(s) as shown in the Figure. For most LOs, the actuator
is a frequency actuator rather than a phase actuator, hence
an implicit integrator (1/s in the Laplace domain) must be
added to the control loop. The input phase of the original
signal can be recovered by integrating the actuator signal to
recover φm(t) and then adding the residual phase to recover
the phase of the input signal. This process is known as phase
reconstruction. In practice, an overall offset frequency, νoff ,
is added to the LO outside the phase-lock loop. This is a
reference frequency which the phasemeter will measure all
phases with respect to. For example, if the reference frequency
is 10 MHz and an input signal with a frequency of 11 MHz is
applied to the input, the output of the phasemeter will be a
continuous ramp with a slope of 106 cycles/s.

The UFLIS phasemeter is implemented in a digital signal-
processing unit consisting of a FPGA which handles the I/Q
demodulation and the phase-lock loop and a floating-point
processor which handles scaling and phase reconstruction.
Inputs are sampled at 100 MHz and multiplied with LO signals
from a direct digital synthesizer (DDS). The outputs of the
multipliers are digitally filtered and downsampled to approxi-
mately 800 kHz. Rather than implement (19) in the FPGA, the
Q(t) signal is used as the error signal in the phase-lock loop,
which has a unity gain bandwidth of approximately 8 kHz.
The I(t), Q(t), and νcorr(t) signals are further downsampled
to approximately 100 kHz and transferred to the floating point
processor. The floating point processor reconstructs the phase
and amplitude of the signal, filters and downsamples them
further, and transfers the data to a host PC.

Figure 9. Schematic of an I/Q phasemeter with a tracking LO

The performance of the UFLIS phasemeter was evaluated
using an “entangled-phase” test, designed to mimic the re-
quirements of TDI. Three independent electrical oscillators
with phases φi(t) i = 1, 2, 3 were mixed pair wise, creating
three electronic beat signals with phases φij(t) ≡ φi(t) −
φj(t), i < j. These phases of the three beat signals were
measured using three independent phasemeter channels. The
measured signals were then combined in a phase-noise can-
celing linear combination,

φ123(t) ≡ φ12(t) + φ13(t)− φ23(t) = 0. (20)

Figure 10. Performance of the UFLIS phasemeter in an entangled-phase
measurement

Figure 10 shows the results of the measurement. The three
individual beat note signals have the noise spectra in the upper
curves. The magenta curve shows φ̃123(f) obtained using the
raw phasemeter outputs. The cyan curve shows φ̃123(f) after
correcting for a fixed time-delay between the three phasemeter
channels using a fractional-delay interpolation filter [14]. The
corrected result follows the theoretical prediction of the noise
added by finite representation of the DDS frequency, indicating
that the UFLIS phasemeter is currently limited by digitization
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noise. This can be corrected by increasing the number of bits
in the DDS, a process which is currently ongoing.

B. EPD Units

One piece of technology which is necessary for UFLIS
but not for LISA is the EPD unit. The EPD units were
developed in three generations [11]. The initial iteration of
the EPD unit was a simple digital delay line consisting of
an analog/digital converter (ADC), a first-in first-out (FIFO)
memory buffer, and a digital/analog converter (DAC) all driven
by a single sampling clock. The maximum sampling frequency
was 200 kHz, too slow for LISA beat notes but acceptable for
proof-of-concept. A total of 64 MB of RAM was capable of
storing each of the two independent channels for up to 80 s.

The second-generation utilized the same general architec-
ture but was transferred to hardware capable of digitizing
four channels at up to 25 MHz. The increase in sampling
frequency also increased the memory requirements, resulting
in a maximum delay of ∼ 3 s for each channels with the
1 GBmemory capacity.

A change in architecture was made for the third-generation
EPD unit. Rather than digitize and store the entire time-
series of the beat note, a phasemeter is used to measure
I(t),Q(t), and νcorr(t) of the beat note. These signals are
then downsampled to ∼ 100 kHz and stored in a FIFO buffer.
The output of the buffer is connected to a second DDS,
which produces a copy of the delayed signal that is fed to
a DAC. This arrangement greatly reduces the data storage
requirements of the EPD unit. It also allows for a frequency
shift to be induced between the two signals by using a different
offset frequency in the phasemeter and the output DDS. The
trade-off is that phase or amplitude information at frequencies
above ∼ 50 kHz is filtered out by the EPD unit. This is not
an issue for the LISA science signals, which are in the mHz
band, or arm-locking loops, which typically have unity gain
bandwidths of ≤ 10 kHz.

V. PRELIMINARY RESULTS WITH UFLIS

A. TDI

The initial test of TDI-principles with UFLIS was a “single-
arm TDI” experiment performed with the second-generation
EPD unit and an earlier version of the UFLIS phasemeter that
operated on signals in the 10 kHz range [15]. A diagram of the
experiment is shown in Figure 11. Two pre-stabilized lasers are
interfered at a PD, producing a beat note with a frequency of ∼
10 MHz. To bring the frequency into the range of the second-
generation EPD unit, the beat note is demodulated using LO1,
a mixer, and a low-pass filter. The result is a signal with a
frequency of ∼ 1 MHz and phase noise of a pre-stabilized
laser. This signal is electronically split into two portions, one
of which is delayed by τ ≈ 2 s in the EPD unit. Both the
output of the EPD unit and the un-delayed signal are again
demodulated using LO2, producing two signals at ∼ 10 kHz.
The phase of these signals is recorded using the phasemeters.

Figure 11. ”Single-arm TDI” experiment using UFLIS

Figure 12 shows the results of the measurement. The curves
labeled “prompt” and “delayed” show the noise spectra of
the individual signals S1(t) and S2(t). The curve labeled
“time-delayed combination” is the noise spectrum of the signal
S1(t)− S2(t− τ ′), where τ ′ is a time-delay chosen to match
the EPD time delay, τ . The cancellation apparent in this
channel is the same type of cancellation that will occur in
TDI variables such as X , hence we refer to it as a “single-
arm TDI” experiment despite the fact that it is not a LISA
TDI variable.

Figure 12. Results of the “single-arm TDI” experiment

The noise suppression in the TDI-like channel is not perfect,
although the noise is suppressed by approximately 5 orders
of magnitude at low frequencies. Possible sources for the
additional noise include discrepancies between τ and τ ′, noise
in the phasemeters, and noise added by the EPD unit. With
the exception of the latter, these noise sources will also
be present in LISA. The accuracy of τ ′, which will result
from an independent ranging measurement between the SC, is
particularly important in setting the limits on TDI.

Coupled with the requirement of accurately estimating τ
is the ability to precisely generate signals such as S(t − τ ′)
from signals that are sampled at regular intervals. Without
some form of interpolation, a timing error, ∆τ ≡ τ − τ ′, will
result that will range from zero to one-half a sample period.
The noise floor present in Figure 12 is consistent with ∆τ ≡
τ − τ ′ ≈ 2 µs, consistent with the sampling period of 12.5 µs
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for the phasemeters used in this experiment. Improvements can
be made using fractional-delay filtering to interpolate between
points, such as was used in the phasemeter results of Figure
10.

B. Arm-Locking

1) Electronic Model: An initial proof-of-concept demon-
stration modeling arm-locking using the EPD technique was
made with a purely electronic model of a LISA arm [16],
as shown in Figure 13. A voltage-controlled oscillator (VCO)
stands in for the laser. The output of the VCO is split into
two parts, one of which is delayed by 500 ms in an EPD unit,
representing the round-trip travel along a LISA arm. These two
signals are then electronically mixed, simulating the optical
mixing that occurs on the LISA PD. The output of the mixer
is filtered and shaped in a controller before being fed back to
the actuator on the VCO.

Figure 13. A purely electronic model of arm-locking in LISA

The performance of the electronic arm-locking model is
shown in Figure 14. The solid red curve shows the measured
ratio of stabilized to free-running noise. The dashed blue curve
shows a model of the noise suppression that was fit to the data
with two free parameters: the delay time in the EPD and the
overall gain of the loop. The data fits the model well, showing
the general character of the expected LISA arm-locking loop
from Figure 6.

2) Initial Optical Model: The next step in modeling arm-
locking for LISA is to include laser systems [17]. Figure
15 shows the experimental layout for the initial optical arm-
locking model. The first step is to create a laser with the
same noise characteristics as a pre-stabilized laser but with
the ability to be tuned in frequency. To achieve this, L1 is
stabilized to an optical cavity in the standard fashion and L2

is phase-locked to L1 with a phase offset provided by a VCO.
For a high-gain phase-lock loop, the phase of L2 tracks the
sum of the L1 phase and the VCO phase. The free-running
VCO phase noise is much smaller than the stabilized phase
noise of L1 and consequently does not increase the phase noise
of L2. L2 is then interfered with a second pre-stabilized laser,
L0, producing a signal that is the equivalent of the LISA laser
or the VCO in Figure 13. The error signal is formed using

Figure 14. Closed-loop noise suppression for an electronic model of arm-
locking

an EPD unit with a 1 ms delay and an electronic mixer. This
small delay was necessary due to dynamic range limitations of
the phasemeter used in the system. The error signal is shaped
by the controller and fed into the VCO, completing the loop.

Figure 15. Experimental layout for the initial optical model of arm-locking

Figure 16 shows the performance of the initial optical arm-
locking model. The measured noise suppression is shown
in blue, while the result predicted from an analytic model
is shown in red. While the data is not as clean as for the
electronic model, it clearly follows the correct general shape,
with the first few noise enhancement peaks clearly visible. The
divergence from the model at high frequencies is an artifact
due to the limited performance of the phasemeter used to
make these measurements. At low-frequencies, the suppression
appears to hit a noise floor of approximately −40 dB.

VI. FUTURE WORK

The results shown in the previous two sections demonstrate
the possibilities of the EPD approach to modeling LISA. As
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Figure 16. Results of the initial optical arm-locking model

additional improvements are made to simulator technology
such as EPD units and phasemeters, the UFLIS model will im-
prove its correlation with LISA. Our current work is focusing
on generating the two-arm TDI variable X and improving the
optical arm-locking model with increased noise suppression,
better dynamic range, and longer delay times. Progress towards
both of these goals has already been made.

Beyond these immediate goals, the UFLIS team will con-
tinue to add to the accuracy and complexity of the hardware
model. This may include integrated arm-locking/TDI measure-
ments, the addition of GW signals, and modeling of the orbital
dynamics of the constellation. We believe that hardware mod-
eling of LISA is an important activity that is complimentary to
the extensive software modeling that is ongoing in the LISA
data analysis community. The software models can improve
UFLIS by providing details of the orbits, signals, and other
effects while UFLIS will provide laboratory measurements of
instrumental noise that will improve the noise modeling of the
software simulators. Together with rigorous and careful testing
of the LISA flight hardware, these techniques can provide
the LISA team with the confidence they need to launch what
promises to be a truly ground-breaking mission.
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