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Abstract-Autonomous dynamic event scheduling, using 

Iterative Repair techniques such as those employed by CASPER 
and ASPEN, is an essential component of successful space 
missions, as it enables spacecraft to adaptively schedule tasks in a 
dynamic, real-time environment.  Event rescheduling is a 
compute-intensive process.  Typical applications involve 
scheduling hundreds of events that share tens or hundreds of 
resources.  We are developing a set of tools for automating the 
derivation of application-specific processors (ASIPs) from ANSI 
C source code that perform this scheduling in an efficient 
manner.  The tools will produce VHDL code targeted for a Xilinx 
Virtex 4 FPGA (Field Programmable Gate Array).  Features of 
FPGAs, including large processing bandwidth and embedded 
ASICs and block RAMs, are exploited to optimize the design.  
Efficiency is measured by combining the factors of execution 
speed, circuit size, power consumption, and fault tolerance. 

Iterative Repair problems are generally solved using a 
combinatorial search heuristic, such as Simulated Annealing 
(which is used by CASPER and ASPEN), Genetic Algorithms, or 
Stochastic Beam Search.  All of these methods operate by 
gradually improving an initial solution over hundreds or 
thousands of iterations.  We propose an FPGA-based 
architectural framework derived from ANSI C function-level 
blocks for accelerating these computations.  At a function level, 
99% of the work done by any Simulated Annealing algorithm is 
the repeated execution of three high-level steps:  (1) generating a 
new solution, (2) evaluating the solution, and (3) determining 
whether the new solution should be accepted.  The specifics of 
how each step operates vary with the application and are 
implemented in VHDL through data- and control-flow analysis 
of the source C code.  In this paper, we discuss specifics of an 
architecture template for automated processor design. 

I. INTRODUCTION 

Field Programmable Gate Arrays (FPGAs) are becoming 

increasingly popular as a platform of choice for spacecraft 

computer systems.  FPGA-based designs are highly cost 

effective compared to Application-Specific Integrated Circuits 

(ASICs), and provide more computing power and efficiency 

than standard microprocessors.  Current and planned NASA 

missions that utilize FPGA technology include MARTE (Mars 

Astrobiology Research and Technology Experiment) [1] and 

the Discovery and New Frontier programs [2]. However, the 

complexity of designing even reasonably efficient micro-

architectures on commodity FPGA devices is daunting for 

engineers outside the realm of VLSI design. 

Therefore, a methodology for automatic derivation of 

FPGA-based application-specific processors for use in the 

mission planning and event scheduling computations 

performed by satellites and deep-space probes will mitigate 

this steep barrier and facilitate their adoption to a larger 

audience who do not have skills in VLSI design. Through our 

methodology custom ASIPs on FPGAs can quickly be 

designed which exploit the features of the scheduling 

algorithms and maximize the efficiency of the system. 

II. RELATED WORK 

Our methodology leverages concepts from several different 

research areas, including hardware implementations of 

heuristic search techniques, the design of application-specific 

instruction processors (ASIPs), and methods for performing 

design space exploration for FPGA-based processors.  Recent 

advances in each of these fields are discussed in this section. 

Iterative repair utilizes a combinatorial search heuristic, 

such as a genetic algorithm (GA), simulated annealing (SA), 

or a stochastic beam search (SBS), to arrive at a solution.  In 

theory, implementing these combinatorial search algorithms in 

hardware could significantly speed up the search process.  

Large amounts of parallelism and pipelining can be extracted 

from GA and SBS, since deriving a new generation is largely 

only a function of the previous generation. 

FPGA-based GAs and SBS have been implemented for the 

purposes of blind signal separation [3], filter design [4], 

function interpolation [5], and speech recognition [6]. As long 

as the solution length is kept reasonably small, this technique 

in which entire solutions are passed between pipelined 

modules works well. Iterative repair problems, however, are 

complex enough that a solution can be hundreds of bytes in 

length. 

 Design space exploration in the context of FPGA-based 

architectures is a powerful tool.  Exploring a design space is, 

in essence, searching the combinatorial space of all possible 

hardware architectures that can support a given function.  The 

goal is to identify the architecture that yields the best tradeoff 



between conflicting goals, such as minimizing required FPGA 

resources while maximizing system throughput.  The design 

space is generally very large, thus demanding a search 

heuristic such as simulated annealing or a genetic algorithm to 

arrive at a solution within a reasonable amount of time.  An 

FPGA design space can be searched at many levels, from the 

low-level specification of individual look-up tables to high-

level complex modules. 

An overview of the different types of processors that are 

typically considered in a design space search is provided in [7].  

Reduced Instruction Set (RISC), Complex Instruction Set 

(CISC), VLIW (Very Long Instruction Word), dataflow, and 

tagged-token architectures are all commonly utilized.  A 

design space explorer is generally restricted to one flavor of 

processor in order to put an upper bound on the time needed to 

search the design space.  Trying to search across all possible 

architectures is considered to be an intractable problem. 

In [8], a good description of performing design space 

exploration for a reconfigurable processor is described.  

Important elements to be considered in the design space 

include allocation of computational, control, and memory 

resources, along with the scheduling of operations onto these 

resources.  Exploration can occur in both parallelization 

(spatial optimization) and pipelining (temporal optimization).  

Simulated annealing is employed as the search heuristic.  Over 

thousands of iterations of the simulated annealing algorithm, 

the throughput of the algorithm gradually improves. 

III. IMPLEMENTATION 

In order to develop an automated tool to derive a micro-

architecture from a C program describing applications within 

the class of iterative repair based scheduling algorithms 

similar to that shown in fig. 1, we are taking the approach of 

first defining and prototyping an application oriented 

architecture framework.  This framework will then be used to 

guide the tool to analyze the C program and determine the 

specifics of different control, memory, and computation 

modules that make up the application-specific processor. The 

general hardware framework consists of an architecture that is 

conducive to the execution of the simulated annealing 

algorithm as employed by Iterative Repair.  Based upon the 

framework shown in fig. 1, a tool flow is derived for the 

design of iterative repair processors.  This tool flow is shown 

in fig 2.  Source C code for an Iterative Repair problem is first 

passed through GCC to obtain an intermediate .cfg format.  

This is then passed through an Intermediate Format Generator 

to produce custom Control-Data flow graphs.  The custom 

CDFGs are then partitioned by function to Design Space 

Explorers for the different pipeline stages.  The Design Space 

Explorers take the Intermediate Format code a stage-specific 

architecture template, and a constraint file, and produce an 

architecture for each pipeline stage.  In this paper, we 

specifically discuss the custom intermediate code and the 

templates that have been derived for each stage. 

In a simulated annealing/iterative repair technique solutions 

are represented as a string of start times for events numbered 0 

to n-1 for a problem consisting of n events that need to be 

scheduled. Lists of available resources and resources needed 

by each event are also provided. A generic framework macro-

architecture for such algorithms is shown in fig 3. 

The architecture is composed of a five-stage pipeline 

coupled with six memory banks.  A global controller 

coordinates execution and data exchange between the units.  

As this is a pipelined architecture, it can only operate as fast as 

the slowest stage.  Design Space Exploration techniques must 

be employed in the more complex stages to minimize the 

latency.  Each of these stages is discussed in detail in this 

section. 

A. Memory Design 

The architecture consists of 6 memory banks, derived from 

Xilinx FPGA block RAMs. A 1024-word (32-bit word) 

memory bank consumes 4 BRAMs.  Each memory bank holds 

a solution, the score of the solution, and provides some space 

for temporary data storage.  At a given point in time, one 

Figure 1:  Pseudocode for the Simulated Annealing algorithm.  The main 

loop consists of five steps. 

Figure 2:  High-level diagram showing tool flow from C source code to 

application-specific architecture.  Red text indicates portions discussed 

in this paper 



memory bank is associated with each of the five processing 

stages in the pipeline.  The sixth memory block holds the best 

solution found so far.  The main controller determines how 

memory blocks are associated with different processing stages.  

Details on the manner in which memory banks are managed 

are discussed in the section on the main controller. 

B. Copy Processor 

As shown in fig. 1, the main loop of the simulated annealing 

algorithm begins by making a copy of the best solution.  This 

copy is then altered to generate a new solution that could 

potentially replace the best solution.  In the architecture shown 

in fig. 3, the Copy Processor performs this function. 

Assuming the length of the solution is known; the contents 

of the solution in the “best-solution” memory bank are copied, 

word by word, into the memory bank currently associated with 

the Copy Processor.  There is no need to accelerate the copy 

process, as this pipeline stage is guaranteed to complete in 

n+1 clock cycles for a solution length of n.  Other stages are 

much more compute-intensive. As can be seen from fig. 4, the 

copy processor is merely a controller to facilitate data 

transfers.  The “step” signal comes from the main controller, 

indicating that a new pipeline step has begun.  The copy 

controller consists of a counter that generates addresses and 

produces a “done” signal when all data has been copied and 

also controls the write-enable line on the destination memory 

bank.  The source and destination addresses are identical, 

because the data locations in each memory bank are identical. 

C. Alter Processor 

The second stage in the Iterative Repair pipeline is the Alter 

Processor.  The C code for this function is as follows: 

void alter(int *sched) 

{ 

 int i, j; 

 i = rand() % MAX_EVENTS; 

 j = rand() % MAX_LATENCY;                           

 sched[i] = j; 

} 

 

Basically, one event is selected at random from the solution 

string.  The start time of this event is changed to a random 

value smaller than the maximum latency.  This stage shown in 

fig. 5 could be accelerated by introducing an additional 

random number generator and an additional divider, allowing 

for maximum concurrency.  But it is not necessary as a 15-

cycle integer divider allows this stage to terminate in 21 clock 

cycles, regardless of the size of the solution string.  As 

solutions generally consist of hundreds of events, even the 

simple Copy Processor will have a greater latency than the 

Alter Processor.  The alter controller is based on a counter that 

starts when the “step” signal is received from the Main 

Controller, control logic to enable register writing on the 

“address” and “data” registers on the proper clock cycles, and 

a “done” signal to indicate that the stage has completed. 

D. Accept Processor 

The Accept Processor’s job is to determine whether to 

accept the current solution as the new best solution.  If the 

Figure 3:  Top-level architecture depiction for a pipelined Iterative Repair 

processor.  Black lines represent data buses and red lines signify control 

signals. 

Figure 4:  The Copy Processor:  Data is copied word by word from the 

source memory bank to the destination memory bank. 

Figure 5.  The Alter Processor.  A random number generator is used to 

modify the incoming solution. 



current solution is better than the best solution, the current 

solution is accepted unconditionally. According to the 

Simulated Annealing algorithm, a solution that is worse than 

the best solution can also be accepted with a computed 

probability, defined in (1). 

 

p = e
∆E/T

, ∆E = Scur - Sbest             (1) 
 

Scur and Sbest are the current and best scores, respectively, 

and T represents temperature.  This probability is a function of 

both the temperature and the difference between the score of 

the current solution and the score of the new solution.  When 

the temperature is high, suboptimal solutions are more-likely 

to be accepted.  This feature allows the algorithm to escape 

from local minima as it searches the solution space and zero in 

on the true optimal solution. 

An architecture that supports this computation is shown in 

fig 6.  The best score and the current score are read from their 

respective memory banks.  The temperature is provided by the 

Main Controller.  The random number generator (RNG) is a 

simple 15-bit tapped shift register.  The exponential block is a 

BRAM-based lookup table.  The I-to-F block is an integer-to-

float converter. 

E. Adjust Temperature Processor 

The Adjust Temperature Processor is a simple but critical 

stage in the pipelined processor.  The temperature is used to 

compute the probability of acceptance in the Accept Processor 

and by the Main Controller to determine when the algorithm 

should complete.  The architecture for the Adjust Temperature 

Processor is shown in fig. 7.  The current temperature is stored 

in a register.  When the “step” signal is received, the 

temperature is multiplied by the constant “cooling rate”, 

which is typically a value such as 0.9999.  This cooling rate 

allows the temperature to decrease slowly and geometrically, 

allowing for the discovery of better solutions.   

F. Main Controller 

The main controller keeps track of the memory block that is 

associated with each processing stage.  Upon the completion 

of a pipeline period, the main controller must determine how 

to reassign the memory blocks to the different stages, keeping 

track of which one holds the best solution and which one can 

be recycled and assigned to the Copy Processor.  The main 

controller also performs global synchronization.  As shown in , 

the main controller receives a “done” signal from each of the 

pipeline stages.  When all stages have completed, the main 

controller sends out a “step” signal to each processor, 

indicating that they can proceed.  The main controller also 

monitors the temperature and halts the system when the 

algorithm is complete.   

G. Evaluate Processor 

The Evaluate Processor is by far the most complex of all the 

pipeline stages in the Iterative Repair architecture.  Work is 

currently in progress for designing this stage.  The “score” of a 

solution to the Iterative Repair problem consists of 3 

components.  A penalty is incurred for total clock cycles 

consumed by the schedule.  A penalty is assessed for double-

booking a resource on a given clock cycle.  Also, a penalty is 

assigned for dependency violations, which occur when event 

“b” depends upon the results of event “a”, but event “b” is 

scheduled before event “a”. 

Fig. 8 shows an intermediate output of our tool as it works 

upon the Evaluate Processor.  Fig. 7 is a control-data flow 

Figure 7:  Adjust Temperature Processor.  The temperature is reduced 

geometrically each time this processing stage runs. 

Figure 6: The Accept Processor.  The new solution is always accepted if it 

is better.  If worse, it is accepted with a computed probability. 



graph depicting basic blocks, data dependencies, control 

dependencies, and data operations for the evaluate function 

described above.  The Evaluate Processor will be designed 

using Design Space Exploration.  A Simulated Annealing 

heuristic will be utilized to identify the optimal processor.  In 

this case, optimal signifies the appropriate tradeoff between 

latency of the Evaluate Processor and resource utilization on 

the FPGA. 

The manner in which the design space is searched is as 

follows:  A minimally adequate architecture is derived as a 

starting point for the processor.  The search is performed by 

repeatedly increasing the resources (such as arithmetic units or 

temporary register storage) allotted to the Evaluate Processor 

to reduce its latency until either no further optimization can be 

done or the processor latency falls below the latency of 

another processing stage.  Latency is determined by 

simulating the performance of the processor using a software 

model. 

IV. FUTURE WORK 

The first priority for future work is to complete the Evaluate 

Processor.  The entire architecture can then be tested and 

optimized.  The end-to-end tool chain depicted in fig. 2 can 

then be built. 

The architecture described in this paper is only an initial 

stage in our vision of hardware acceleration of the Iterative 

Repair algorithm.  Once the processing platform outlined here 

has been completed, a future step would be to further exploit 

the parallel nature of the iterative repair algorithm.  Simulated 

Annealing is a sequential algorithm that can be pipelined, but 

not parallelized.  However, similar heuristic search techniques 

exist that are much more conducive to parallelization.  

Stochastic Beam Search is one of these.  It is almost identical 

to Simulated Annealing, but a set of “best” solutions are 

maintained, rather than a single solution.  The pseudocode for 

the Stochastic Beam Search is shown in fig. 9.  A modified 

version of the Stochastic Beam Search could better utilize 

FPGA resources if significant space is left by the traditional 

Simulated Annealing algorithm. 

Finally, the tool will be designed to accept additional 

optimization constraints such as using Triple Modular 

Redundancy (TMR) or other techniques for implementing 

fault tolerance along with power optimization strategies. 
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Figure 8:  Control-Data Flow Graph of the Evaluate function.  Information 

contained in this graph can be used to create an optimal application-specific 

processor. 

Figure 9.  The Stochastic Beam Search algorithm is similar to 

Simulated Annealing. 


