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Abstract—The primary mission of the National Virtual 

Observatory (NVO) is to make distributed digital archives 
accessible and interoperable in such a way that astronomers can 
maximize their potential for scientific discovery by cross-
matching multi-wavelength data between multiple catalogs on-
the-fly. While cross-matches between small datasets are possible 
at present, large-scale cross-matches that involve all or a large 
fraction of the sky cannot be performed on demand.  This is a 
serious deficiency that prevents the NVO from realizing its 
mission and hinders its widespread acceptance by the 
community. In this paper, we analyze the issues and 
requirements that an environment aiming to enable large-scale 
astronomical science needs to consider, and describe a 
workbench environment where astronomers can cross-correlate, 
analyze and compare vast amounts of data and share their 
results with others.  We focus on catalog data managed by 
commercial Relational Database Management Systems and 
analysis tasks expressed in SQL. We describe an indexing 
algorithm named Zones and its crucial role in enabling 
parallelization and cross-matching of very large datasets. 
 

Index Terms— Cross-Match, Parallelization, Very Large 
Databases.  
 

I. INTRODUCTION 
The astronomical cross-match problem involves identifying 

and comparing light sources belonging to different 
observations of the same sky region. Such observations may 
come from telescopes with different wavelength and detection 
limit capabilities or may correspond to the same telescope but 
have been taken at different times and under different 
conditions. Some times one is interested in finding objects 
surrounding a given object or position. In other cases, the goal 
is to perform one-to-one matches in order to combine physical 
properties or study the temporal evolution of the source. 
When the only attributes under consideration are positional we 
speak of a spatial cross-match. This spatial identification is 
not easy. Due to different errors, instrument sensitivities and 
other peculiarities of the data acquisition and calibration 
process, which are unique to each archive and survey project, 
the same object may have slightly different coordinates on 
different catalogs. Such imprecision makes astronomical 
cross-matching especially hard. We are dealing with a kind of 
cross-match that requires performing a fuzzy spatial join 
across multiple datasets.  Searches and cross-correlations 
 

This work is supported by the NASA Applied Information Systems 
Research Program (NASA AISR 2006-09) and Microsoft Research. 

usually involve millions or billions of objects making spatial 
indexing a fundamental component in any environment 
aiming to provide serious data exploration and scientific 
analysis.   

II. THE ASTRONOMICAL PROBLEM 
Astronomy, like many other sciences, is facing a data 

avalanche. Current and future instruments are producing data 
at rates that will break the Petabyte barrier in the next decade.  
Astronomical datasets are spread all over the world. Formats, 
naming schemas, data structures, etc. are very diverse. Often 
times, the diversity is unavoidable since projects are usually 
funded based on their unique characteristics. However, 
motivated by the wish to share, initiatives such as the National 
Virtual Observatory (NVO)[5] and its partners in the 
International Virtual Observatory Alliance (IVOA)[4] are 
establishing protocols to help communication, minimize 
diversity, and in this way, maximize the number of new 
scientific discoveries.  These characteristics - high 
distribution, diversity, and very large datasets - make the 
cross-match and data analysis to be a big challenge.  

III. OPEN SKYQUERY 
Cross-matching requires all the data to be in the same place 

at some given point in time. In order to solve the distribution 
problem and provide universal access to the data, we created 
OpenSkyQuery.net [10], a web portal that allows querying 
and cross-matching distributed astronomical datasets. Some of 
these datasets contain a billion or more entries, and for each 
entry, tens or even hundreds of columns may be stored.  
Services implement a standard interface defined by the IVOA 
community to facilitate communication between services and 
between services and the portal. Open SkyQuery knows about 
these data services by querying another web application, the 
NVO Registry.  Users may upload small personal catalogs to 
the portal for cross-matching with the big public datasets. 
Users pose their queries in ADQL, the Astronomical Data 
Query Language. ADQL looks very much like SQL, the 
standard Structured Query Language used by many database 
systems. ADQL does not support all features of SQL, but it 
adds several important language constructs specialized for 
astronomy. These include a REGION function that allows 
users to constrain their queries to a particular region on the 
sky, and a cross-match function, XMATCH, that allows 
finding objects in different datasets that are spatially 
coincident to within some tolerance. 
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We have addressed two of the main issues with the 
development of Open SkyQuery. First, we solve the high 
distribution problem by creating an environment that allows 
discovery, integration, and universal data access. Second, the 
data diversity impact is minimized because services follow a 
standard interface protocol which hides the publisher’s 
internal data structures.   

Unfortunately, dealing with very large datasets requires a 
much higher effort. Providing access to very large datasets 
brings issues such as asynchronism and staging of results. 
When querying very big datasets, results are likely to be very 
big as well. Retrieving these results to a browser takes usually 
more time than users are willing to wait in front of their 
computers. Not to mention the lack of usability of displaying 
thousands or even millions of rows on a screen. Moving big 
volumes of data between services is expensive and slow 
usually.  

We also face an optimization challenge. Open SkyQuery 
follows a very basic optimization process which consists of 
counting the number of objects within a given region and 
ordering the cross-match workflow from the service hosting 
the smallest number of objects to the service with the biggest 
number of objects. This fairly simple mechanism works 
reasonably well for most use cases. However as an example, 
when the footprints of the datasets are substantially different, 
this approach might not be efficient. When the datasets are 
small, it does not matter usually, but when we are trying to 
cross-match big datasets covering big areas of the sky, having 
knowledge of footprints and density distributions can help to 
improve the performance of the system significantly.  

Finally, although Open SkyQuery is conceived primarily as 
a service to cross-match distributed astronomical datasets, it 
aims to provide individual access to the datasets as well. 
ADQL queries can be formulated through the portal to 
individual data services. As described above, ADQL is a 
restricted subset of SQL to accommodate to a number of 
different DBMS. Although ADQL serves the purpose it was 
intended for, we lose a lot of the native SQL expressivity and 
programmability at the same time.  

IV. CASJOBS 
The Catalog Archive Server Jobs System (CasJobs) [1] is a 

web application created to solve some of the problems that the 
Sloan Digital Sky Survey (SDSS) Catalog Archive Server 
(CAS) portal, SkyServer [11], was facing due to the increasing 
size of the SDSS catalog databases along with a high demand 
to access the data [9].  

CasJobs addresses the problems by creating a workbench 
environment where users can run almost unlimited queries 
against the SDSS databases in batch mode. Query results can 
be stored on the server-side in the user’s personal relational 
database (MyDB) where users can perform further analysis 
and refinements using the fast filtering and searching tools 
that the DBMS offers. Users may upload and download data 
to and from their MyDB. They can analyze or cross-correlate 
these data inside MyDB or against the main SDSS databases. 

CasJobs grants full power to create new tables, indexes, 
functions, and stored procedures on the user’s MyDB. 
CasJobs also offers a tool that let user look at execution query 
plans. All these capabilities provide a very rich 
programmability environment to implement complex scientific 
workflows [6]. Additionally, CasJobs creates a collaborative 
environment where users can form groups and share their data 
with others. Finally, one of the main benefits of CasJobs is 
that provides a framework where users can bring their SQL 
code to the DBMS server side, which is quite a unique feature. 
CasJobs is by no means exclusive to SDSS and has been 
successfully installed to work with other astronomy projects 
such as the Galex Evolution Explorer (GALEX), Palomar-
Quest, and outside the astronomy context, Ameriflux, a 
project which collects levels of carbon, water, energy and 
nitrogen from micrometeorological tower sites in the 
Americas to do environmental and climatic change studies. 

With the development of CasJobs, we have addressed some 
of the remaining issues related to the management of very 
large datasets.  Users have asynchronous access and can stage 
their data at their own databases systems on the server side. 
Data transfers between client and server are significantly 
reduced and happen only when strictly necessary. Users have 
the full expressivity of SQL to formulate queries and create 
complex workflows against their own databases and/or the 
SDSS databases. Using a CasJobs system holding the three 
largest catalogs such as the United States Naval Observatory 
B (USNOB), Two Micron All Sky Survey (2MASS), SDSS, 
etc., we are (almost) ready to set up an environment where we 
can cross-match very large datasets. The remaining issue we 
need to address now is the inherent computational complexity 
that involves cross-matching big datasets spatially. 

V. ZONES 
Zones is an indexing algorithm to efficiently support spatial 

queries on the sphere using a generic RDBMS.  

Each position on the sphere can be defined by two angles 
(α, δ). These two angles are known as Longitude and Latitude 
when referring to Earth’s coordinates or Right Accession 
(R.A.) and Declination (DEC) when working in the 
Astronomy context.  The Zones algorithm is equally valid to 
work with points on either the terrestrial or celestial sphere.  

The basic idea is to map the sphere into stripes of a certain 
height called zones. Each object at position (α, δ) is assigned 
to a zone by using the fairly simple formula 

zoneID = ⎣ δ + 90.0 / h ⎦, (1) 

where h is the zone height and δ is the Declination, both in 
degrees. Objects within a zone are then stored on disk ordered 
by zoneID and Right Ascension using a traditional B-tree 
index. The storage constraint optimizes the data access as it 
minimizes the number of I/O operations.  
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Fig. 1. Declination vs ZoneID and Right Ascension. The numbers in the 
figures are indexes indicating their order on the disk. Fewer comparisons are 

required when data is ordered by ZoneID and Right Ascension. 
 

Spatial searches, and most specifically circular searches, 
can be efficiently performed by using dynamically computed 
bounding boxes (B-tree ranges), followed by a careful 
(expensive) distance test that examines all members within the 
bounding box and discards false positives. Fig. 1. shows the 
number of comparisons required to perform a 4 arcsec search 
around some arbitrary object using simulated data ordered by 
declination, versus data zoned in 8 arcsec stripes and ordered 
by ZoneID and Right Ascension. The details of how to 
implement the Zones algorithm are discussed in [2]. 

Assuming we have a function implementing a circular 
search, the simplest approach to cross-match two datasets, A 
and B, would be to execute a series of circular searches in 
dataset B centered on object from dataset A. However, when 
the cardinality of A is very big, order of a few millions of 
rows, calling a search function sequentially turns out to be 
extremely slow. Luckily, looking at Fig. 1., one can easily see 
that if the goal is cross-matching, we can load two zones and 
perform the whole comparison in a single step instead of 
executing individual little circular searches,. As a matter of 
fact, using this batch-oriented technique we managed recently 
to run a 1-degree cross-match between SDSS (350 million 
objects) and a sparse grid (50, 000 objects) in 7 hours instead 
of the few years that the sequential execution was predicting.  

Finally, Zones also provides a simple way to partition the 
data, and by extension making easy the parallelization of the 
cross-match. Actually, we can apply partitioning and 
parallelization at two different levels; at the CPU level by 
using a multi-core processor, as well as, distributing the data 
or workload to different servers where the jobs run in parallel.  

At the CPU level and assuming the cross-match distance is 
smaller than the zone height, we can divide the work in cross-
match tasks such as: a) A.zoneID - 1 = B.zoneID, b) A.zoneID 
= B.zoneID, and c) A.zoneID + 1 = B.zoneID. Since there are 
no dependencies, we can run in parallel all pairs {(0, 1), (1, 2), 
…} in different CPUs, followed by pairs {(0, 0), (1, 1), …} 
and  {(1, 0), (2, 1), …} In principle the order is irrelevant, but 

the data is likely to be in the cache if it happens in this order 
and therefore the I/O activity will be reduced. At the moment, 
we have not experimented with the multi-core parallelization 
approach very much. Our partitioning and parallelization 
research and experiments have focused mainly in distributing 
the data and workload across multiple servers. However, the 
multi-core analysis is in the short-term plan.  

In the following section we describe one of our experiments 
cross-matching very big datasets in a cluster of DBMS 
servers. 

VI. PARTITIONING AND PARALLELIZATION TESTS 
We used a vertical partition (subset of attributes) of the 

SDSS Data Release 3, USNOB, and 2MASS catalogs to run 
large-scale access and cross-match queries. SDSS DR3 
contains about 142 million objects covering a non-contiguous 
area of 5,282 squared degrees. In order to simplify our cross-
match experiments, we used most of the 2MASS (28,445,694 
objects) and USNO (117,698,363 objects) area that overlaps 
with SDSS DR3 [Fig. 2.]. The next task was to distribute the 
workload in a homogeneous way. This step implied zoning the 
data and assigning zone subsets to different servers in the 
cluster [Fig. 3.]. At this point, the databases were replicated 
across a cluster of servers.  

The most efficient approach to query a single catalog is to 
distribute the workload homogenously so all nodes process the 

 

Fig. 2. SDSS DR3, 2MASS and USNOB test-case footprints. 
 

     

Fig. 3. Zone distribution of SDSS DR3 data. 
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the same amount of data. But cross-match queries require 
choosing a catalog leading the partitioning. What is the best 
partitioning choice is not always as simple as it might seem. 
For example, a reasonable choice could be to make the catalog 
with the smallest number of objects lead the partitioning. The 
assumption is that minimizing the size of the dataset works 
best because we reduce the number of operations on each 
server. This would be 2MASS in our test case.  Looking at 
Fig. 3., we can see that making 2MASS the leading 
partitioning catalog to do a cross-match with SDSS would be 
a terrible choice. While certain servers would be overloaded, 
others would basically remain idle. How to automatically 
decide what is the best distribution approach is not easy, if not 
impossible, without having precise information about the 
catalog densities and coverage footprints. 

Performance Analysis 
We run the same cross-match procedures between SDSS 

DR3 and 2MASS using 1, 2, 4, and 8 servers to measure 
scalability. Fig. 4. shows that scalability is certainly possible 
in terms of CPU time. This is directly related to a good 
workload distribution. On the top right, the initial high slope 
for the one and two-server cases is due to I/O as the bottom 
graph shows. However, the basically flat line plotting total 
elapsed time indicates that by using four or more servers we 
can speed up the cross-match computation linearly. It is worth 
noticing the small difference between Total CPU and Total 
Elapse indicating good usage of the CPU. 

 

       

 

Fig. 4. SDSS vs 2MASS Cross-Match Performance. These tests were 
performed under the following hardware and software configuration: Super 

Micro Rack mounted Cluster (10 nodes), Processor: Xeon 2.7 GHz (x4), 2 GB 
Memory, Disks: 3ware Escalade 7000 ATA RAID, Microsoft Windows 

Server 2003 Enterprise, Microsoft SQL Server 2000. 
 

VII. CONCLUSION 
In this paper, we analyzed the issues and requirements that 

an environment aiming to enable large-scale astronomical 
science needs to consider and described a workbench 
environment, CasJobs, where astronomers can cross-correlate, 
analyze and compare vast amounts of data and share their 
results with others.  Using this type of workbenches we can 
bring the multi-billion cross-match problem down to the few 
hours range. Such a framework allows astronomers to 
implement sophisticated analysis workflows using the full 
expressivity of SQL.  DBMS native optimization procedures 
can be applied to improve the performance of individual and 
distributed queries. The price to pay though is that data need 
to be centralized and managed under a homogenous DBMS 
framework.  Although, this centralization might not seem a 
very attractive idea, the alternative is to continuously move 
the data on-demand. A framework aiming to provide an 
environment where to cross-correlate, analyze and compare 
vast amounts of data will need mechanisms such as UDT 
(UDP-based Data Transfer), a high performance network 
transfer protocol, to move the data between archives quickly.  
There are always limits to how much data can be hosted in a 
single site or by a single organization. Nonetheless, it will be 
always important to analyze the cost of moving the same data 
many times versus the cost of hosting the data permanently.  

We have also described Zones, an algorithm capable of 
cross-matching very large datasets efficiently and facilitating 
parallelization. The tests and results presented here 
demonstrate that by zoning, partitioning, and parallelizing the 
workload and using RDBMS technologies, we can reduce 
linearly the response time. Efficient cross-matching is 
becoming critical to projects such as the Large Synoptic 
Survey Telescope (LSST) where millions of objects need to 
be cross-matched in few seconds. 
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