
 1

Abstract—The primary mission of the National Virtual

Observatory (NVO) is to make distributed digital archives
accessible and interoperable in such a way that astronomers can
maximize their potential for scientific discovery by cross-
matching multi-wavelength data between multiple catalogs on-
the-fly. While cross-matches between small datasets are possible
at present, large-scale cross-matches that involve all or a large
fraction of the sky cannot be performed on demand. This is a
serious deficiency that prevents the NVO from realizing its
mission and hinders its widespread acceptance by the
community. In this paper, we analyze the issues and
requirements that an environment aiming to enable large-scale
astronomical science needs to consider, and describe a
workbench environment where astronomers can cross-correlate,
analyze and compare vast amounts of data and share their
results with others. We focus on catalog data managed by
commercial Relational Database Management Systems and
analysis tasks expressed in SQL. We describe an indexing
algorithm named Zones and its crucial role in enabling
parallelization and cross-matching of very large datasets.

Index Terms— Cross-Match, Parallelization, Very Large
Databases.

I. INTRODUCTION
The astronomical cross-match problem involves identifying

and comparing light sources belonging to different
observations of the same sky region. Such observations may
come from telescopes with different wavelength and detection
limit capabilities or may correspond to the same telescope but
have been taken at different times and under different
conditions. Some times one is interested in finding objects
surrounding a given object or position. In other cases, the goal
is to perform one-to-one matches in order to combine physical
properties or study the temporal evolution of the source.
When the only attributes under consideration are positional we
speak of a spatial cross-match. This spatial identification is
not easy. Due to different errors, instrument sensitivities and
other peculiarities of the data acquisition and calibration
process, which are unique to each archive and survey project,
the same object may have slightly different coordinates on
different catalogs. Such imprecision makes astronomical
cross-matching especially hard. We are dealing with a kind of
cross-match that requires performing a fuzzy spatial join
across multiple datasets. Searches and cross-correlations

This work is supported by the NASA Applied Information Systems
Research Program (NASA AISR 2006-09) and Microsoft Research.

usually involve millions or billions of objects making spatial
indexing a fundamental component in any environment
aiming to provide serious data exploration and scientific
analysis.

II. THE ASTRONOMICAL PROBLEM
Astronomy, like many other sciences, is facing a data

avalanche. Current and future instruments are producing data
at rates that will break the Petabyte barrier in the next decade.
Astronomical datasets are spread all over the world. Formats,
naming schemas, data structures, etc. are very diverse. Often
times, the diversity is unavoidable since projects are usually
funded based on their unique characteristics. However,
motivated by the wish to share, initiatives such as the National
Virtual Observatory (NVO)[5] and its partners in the
International Virtual Observatory Alliance (IVOA)[4] are
establishing protocols to help communication, minimize
diversity, and in this way, maximize the number of new
scientific discoveries. These characteristics - high
distribution, diversity, and very large datasets - make the
cross-match and data analysis to be a big challenge.

III. OPEN SKYQUERY
Cross-matching requires all the data to be in the same place

at some given point in time. In order to solve the distribution
problem and provide universal access to the data, we created
OpenSkyQuery.net [10], a web portal that allows querying
and cross-matching distributed astronomical datasets. Some of
these datasets contain a billion or more entries, and for each
entry, tens or even hundreds of columns may be stored.
Services implement a standard interface defined by the IVOA
community to facilitate communication between services and
between services and the portal. Open SkyQuery knows about
these data services by querying another web application, the
NVO Registry. Users may upload small personal catalogs to
the portal for cross-matching with the big public datasets.
Users pose their queries in ADQL, the Astronomical Data
Query Language. ADQL looks very much like SQL, the
standard Structured Query Language used by many database
systems. ADQL does not support all features of SQL, but it
adds several important language constructs specialized for
astronomy. These include a REGION function that allows
users to constrain their queries to a particular region on the
sky, and a cross-match function, XMATCH, that allows
finding objects in different datasets that are spatially
coincident to within some tolerance.

Cross-Matching Very Large Datasets
María A. Nieto-Santisteban, Aniruddha R. Thakar, and Alexander S. Szalay

Johns Hopkins University

 2

We have addressed two of the main issues with the
development of Open SkyQuery. First, we solve the high
distribution problem by creating an environment that allows
discovery, integration, and universal data access. Second, the
data diversity impact is minimized because services follow a
standard interface protocol which hides the publisher’s
internal data structures.

Unfortunately, dealing with very large datasets requires a
much higher effort. Providing access to very large datasets
brings issues such as asynchronism and staging of results.
When querying very big datasets, results are likely to be very
big as well. Retrieving these results to a browser takes usually
more time than users are willing to wait in front of their
computers. Not to mention the lack of usability of displaying
thousands or even millions of rows on a screen. Moving big
volumes of data between services is expensive and slow
usually.

We also face an optimization challenge. Open SkyQuery
follows a very basic optimization process which consists of
counting the number of objects within a given region and
ordering the cross-match workflow from the service hosting
the smallest number of objects to the service with the biggest
number of objects. This fairly simple mechanism works
reasonably well for most use cases. However as an example,
when the footprints of the datasets are substantially different,
this approach might not be efficient. When the datasets are
small, it does not matter usually, but when we are trying to
cross-match big datasets covering big areas of the sky, having
knowledge of footprints and density distributions can help to
improve the performance of the system significantly.

Finally, although Open SkyQuery is conceived primarily as
a service to cross-match distributed astronomical datasets, it
aims to provide individual access to the datasets as well.
ADQL queries can be formulated through the portal to
individual data services. As described above, ADQL is a
restricted subset of SQL to accommodate to a number of
different DBMS. Although ADQL serves the purpose it was
intended for, we lose a lot of the native SQL expressivity and
programmability at the same time.

IV. CASJOBS
The Catalog Archive Server Jobs System (CasJobs) [1] is a

web application created to solve some of the problems that the
Sloan Digital Sky Survey (SDSS) Catalog Archive Server
(CAS) portal, SkyServer [11], was facing due to the increasing
size of the SDSS catalog databases along with a high demand
to access the data [9].

CasJobs addresses the problems by creating a workbench
environment where users can run almost unlimited queries
against the SDSS databases in batch mode. Query results can
be stored on the server-side in the user’s personal relational
database (MyDB) where users can perform further analysis
and refinements using the fast filtering and searching tools
that the DBMS offers. Users may upload and download data
to and from their MyDB. They can analyze or cross-correlate
these data inside MyDB or against the main SDSS databases.

CasJobs grants full power to create new tables, indexes,
functions, and stored procedures on the user’s MyDB.
CasJobs also offers a tool that let user look at execution query
plans. All these capabilities provide a very rich
programmability environment to implement complex scientific
workflows [6]. Additionally, CasJobs creates a collaborative
environment where users can form groups and share their data
with others. Finally, one of the main benefits of CasJobs is
that provides a framework where users can bring their SQL
code to the DBMS server side, which is quite a unique feature.
CasJobs is by no means exclusive to SDSS and has been
successfully installed to work with other astronomy projects
such as the Galex Evolution Explorer (GALEX), Palomar-
Quest, and outside the astronomy context, Ameriflux, a
project which collects levels of carbon, water, energy and
nitrogen from micrometeorological tower sites in the
Americas to do environmental and climatic change studies.

With the development of CasJobs, we have addressed some
of the remaining issues related to the management of very
large datasets. Users have asynchronous access and can stage
their data at their own databases systems on the server side.
Data transfers between client and server are significantly
reduced and happen only when strictly necessary. Users have
the full expressivity of SQL to formulate queries and create
complex workflows against their own databases and/or the
SDSS databases. Using a CasJobs system holding the three
largest catalogs such as the United States Naval Observatory
B (USNOB), Two Micron All Sky Survey (2MASS), SDSS,
etc., we are (almost) ready to set up an environment where we
can cross-match very large datasets. The remaining issue we
need to address now is the inherent computational complexity
that involves cross-matching big datasets spatially.

V. ZONES
Zones is an indexing algorithm to efficiently support spatial

queries on the sphere using a generic RDBMS.

Each position on the sphere can be defined by two angles
(α, δ). These two angles are known as Longitude and Latitude
when referring to Earth’s coordinates or Right Accession
(R.A.) and Declination (DEC) when working in the
Astronomy context. The Zones algorithm is equally valid to
work with points on either the terrestrial or celestial sphere.

The basic idea is to map the sphere into stripes of a certain
height called zones. Each object at position (α, δ) is assigned
to a zone by using the fairly simple formula

zoneID = ⎣ δ + 90.0 / h ⎦, (1)

where h is the zone height and δ is the Declination, both in
degrees. Objects within a zone are then stored on disk ordered
by zoneID and Right Ascension using a traditional B-tree
index. The storage constraint optimizes the data access as it
minimizes the number of I/O operations.

 3

Fig. 1. Declination vs ZoneID and Right Ascension. The numbers in the
figures are indexes indicating their order on the disk. Fewer comparisons are

required when data is ordered by ZoneID and Right Ascension.

Spatial searches, and most specifically circular searches,
can be efficiently performed by using dynamically computed
bounding boxes (B-tree ranges), followed by a careful
(expensive) distance test that examines all members within the
bounding box and discards false positives. Fig. 1. shows the
number of comparisons required to perform a 4 arcsec search
around some arbitrary object using simulated data ordered by
declination, versus data zoned in 8 arcsec stripes and ordered
by ZoneID and Right Ascension. The details of how to
implement the Zones algorithm are discussed in [2].

Assuming we have a function implementing a circular
search, the simplest approach to cross-match two datasets, A
and B, would be to execute a series of circular searches in
dataset B centered on object from dataset A. However, when
the cardinality of A is very big, order of a few millions of
rows, calling a search function sequentially turns out to be
extremely slow. Luckily, looking at Fig. 1., one can easily see
that if the goal is cross-matching, we can load two zones and
perform the whole comparison in a single step instead of
executing individual little circular searches,. As a matter of
fact, using this batch-oriented technique we managed recently
to run a 1-degree cross-match between SDSS (350 million
objects) and a sparse grid (50, 000 objects) in 7 hours instead
of the few years that the sequential execution was predicting.

Finally, Zones also provides a simple way to partition the
data, and by extension making easy the parallelization of the
cross-match. Actually, we can apply partitioning and
parallelization at two different levels; at the CPU level by
using a multi-core processor, as well as, distributing the data
or workload to different servers where the jobs run in parallel.

At the CPU level and assuming the cross-match distance is
smaller than the zone height, we can divide the work in cross-
match tasks such as: a) A.zoneID - 1 = B.zoneID, b) A.zoneID
= B.zoneID, and c) A.zoneID + 1 = B.zoneID. Since there are
no dependencies, we can run in parallel all pairs {(0, 1), (1, 2),
…} in different CPUs, followed by pairs {(0, 0), (1, 1), …}
and {(1, 0), (2, 1), …} In principle the order is irrelevant, but

the data is likely to be in the cache if it happens in this order
and therefore the I/O activity will be reduced. At the moment,
we have not experimented with the multi-core parallelization
approach very much. Our partitioning and parallelization
research and experiments have focused mainly in distributing
the data and workload across multiple servers. However, the
multi-core analysis is in the short-term plan.

In the following section we describe one of our experiments
cross-matching very big datasets in a cluster of DBMS
servers.

VI. PARTITIONING AND PARALLELIZATION TESTS
We used a vertical partition (subset of attributes) of the

SDSS Data Release 3, USNOB, and 2MASS catalogs to run
large-scale access and cross-match queries. SDSS DR3
contains about 142 million objects covering a non-contiguous
area of 5,282 squared degrees. In order to simplify our cross-
match experiments, we used most of the 2MASS (28,445,694
objects) and USNO (117,698,363 objects) area that overlaps
with SDSS DR3 [Fig. 2.]. The next task was to distribute the
workload in a homogeneous way. This step implied zoning the
data and assigning zone subsets to different servers in the
cluster [Fig. 3.]. At this point, the databases were replicated
across a cluster of servers.

The most efficient approach to query a single catalog is to
distribute the workload homogenously so all nodes process the

Fig. 2. SDSS DR3, 2MASS and USNOB test-case footprints.

Fig. 3. Zone distribution of SDSS DR3 data.

 4

the same amount of data. But cross-match queries require
choosing a catalog leading the partitioning. What is the best
partitioning choice is not always as simple as it might seem.
For example, a reasonable choice could be to make the catalog
with the smallest number of objects lead the partitioning. The
assumption is that minimizing the size of the dataset works
best because we reduce the number of operations on each
server. This would be 2MASS in our test case. Looking at
Fig. 3., we can see that making 2MASS the leading
partitioning catalog to do a cross-match with SDSS would be
a terrible choice. While certain servers would be overloaded,
others would basically remain idle. How to automatically
decide what is the best distribution approach is not easy, if not
impossible, without having precise information about the
catalog densities and coverage footprints.

Performance Analysis
We run the same cross-match procedures between SDSS

DR3 and 2MASS using 1, 2, 4, and 8 servers to measure
scalability. Fig. 4. shows that scalability is certainly possible
in terms of CPU time. This is directly related to a good
workload distribution. On the top right, the initial high slope
for the one and two-server cases is due to I/O as the bottom
graph shows. However, the basically flat line plotting total
elapsed time indicates that by using four or more servers we
can speed up the cross-match computation linearly. It is worth
noticing the small difference between Total CPU and Total
Elapse indicating good usage of the CPU.

Fig. 4. SDSS vs 2MASS Cross-Match Performance. These tests were
performed under the following hardware and software configuration: Super

Micro Rack mounted Cluster (10 nodes), Processor: Xeon 2.7 GHz (x4), 2 GB
Memory, Disks: 3ware Escalade 7000 ATA RAID, Microsoft Windows

Server 2003 Enterprise, Microsoft SQL Server 2000.

VII. CONCLUSION
In this paper, we analyzed the issues and requirements that

an environment aiming to enable large-scale astronomical
science needs to consider and described a workbench
environment, CasJobs, where astronomers can cross-correlate,
analyze and compare vast amounts of data and share their
results with others. Using this type of workbenches we can
bring the multi-billion cross-match problem down to the few
hours range. Such a framework allows astronomers to
implement sophisticated analysis workflows using the full
expressivity of SQL. DBMS native optimization procedures
can be applied to improve the performance of individual and
distributed queries. The price to pay though is that data need
to be centralized and managed under a homogenous DBMS
framework. Although, this centralization might not seem a
very attractive idea, the alternative is to continuously move
the data on-demand. A framework aiming to provide an
environment where to cross-correlate, analyze and compare
vast amounts of data will need mechanisms such as UDT
(UDP-based Data Transfer), a high performance network
transfer protocol, to move the data between archives quickly.
There are always limits to how much data can be hosted in a
single site or by a single organization. Nonetheless, it will be
always important to analyze the cost of moving the same data
many times versus the cost of hosting the data permanently.

We have also described Zones, an algorithm capable of
cross-matching very large datasets efficiently and facilitating
parallelization. The tests and results presented here
demonstrate that by zoning, partitioning, and parallelizing the
workload and using RDBMS technologies, we can reduce
linearly the response time. Efficient cross-matching is
becoming critical to projects such as the Large Synoptic
Survey Telescope (LSST) where millions of objects need to
be cross-matched in few seconds.

ACKNOWLEDGMENT
The authors would like to acknowledge Jim Gray

(Microsoft Research) as a co-author in this paper. Sadly, we
could not find Jim [12] to review it and give his blessing.

REFERENCES
[1] CasJobs http://casjobs.sdss.org/CasJobs/
[2] J. Gray, M. A. Nieto-Santisteban, and A. Szalay, “The Zones Algorithm

for Finding Points-Near-a-Point or Cross-Matchin Spatial Datasetes,”
Microsoft Technical Report: MSR-TR-2006-52, April 2006.

[3] R. L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan, and Q. Zhang,
“SABUL, Simple Available Bandwidth Utilization Library for high-
speed wide area networks.” Journal of Supercomputing, to appear.

[4] International Virtual Observatory Alliance, http://ivoa.net
[5] National Virtual Observatory, http://us-vo.org
[6] M. A. Nieto-Santisteban, J. Gray, A. Szalay, J. Annis, A. R. Thakar, and

W. O’Mullane, “When Database Systems Meet the Grid,” in Proc. ACM
CIDR 2005, Asilomar, CA, January 2005.

[7] M. A. Nieto-Santisteban, A. Szalay, A. R. Thakar, and J. Gray, “LSST,
the Spatial Cross-Match Challenge,” Astronomical Data Analysis
Software and Systems XVI O1.2 ASP Conference Series, Vol. XXX,
2007, in press.

[8] R. A. Shaw, F. Hill and D. J. Bell, eds.

 5

[9] W. O’Mullane, N. Li, M. A. Nieto-Santisteban, A. Thakar, A. Szalay,
and J. Gray, “Batch is back: CasJobs, serving multi-TB data on the
Web,” in Proc. 2005 IEEE International Conference on Web Services
(ICWS 2005). Orlando, FL, July 2005.

[10] Open SkyQuery, http://openskyquery.net
[11] SkyServer, the SDSS Catalog Archive Server, http://skyserver.sdss.org
[12] Tenacious Search, http://www.openphi.net/tenacious/

