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Abstract— Unmanned planetary landers to date have landed 
"blind"; that is, without the benefit of onboard landing hazard 
detection and avoidance systems. This constrains landing site 
selection to very benign terrain, which in turn constrains the 
scientific agenda of missions. The state of the art Entry, Descent, 
and Landing (EDL) technology can land a spacecraft on Mars 
somewhere within a very large landing ellipse (20-100 km).  
However, even if a landing ellipse is only a few kilometers long, it 
is very likely to contain hazards such as craters, discontinuities, 
steep slopes, and large rocks, regardless of how the ellipse is 
selected.  A lander that encounters a large rock, falls off a cliff, or 
tips over on a steep slope can sustain mission-fatal damage. In this 
paper, we will briefly review sensor options for landing hazard 
detection and identify an approach based on stereo vision and 
shadow analysis that addresses the broadest set of missions. We 
present the hazard detection approach which fuses stereo vision 
and shadow based rock detection to maximize the spacecraft 
safety. We discuss in detail several performance models for slope 
estimation and rock detection within this approach and validate 
those models experimentally. Instantiating our model of rock 
detection reliability for Mars predicts that this approach will 
reduce the probability of failed landing by at least a factor of 4 in 
any given terrain. We will also discuss a recent activity to convert 
the shadow-based rock detector into a rock detection and 
mapping tool that we are using to process very large, high-
resolution HiRISE images from the Mars Reconnaissance Orbiter 
(MRO) to assist in landing site selection for the Phoenix mission. 

I.  INTRODUCTION 
Landing site selection procedures in planetary exploration 

use all available remote sensing data to characterize the safety 
of potential sites before landing is attempted. With cameras now 
in orbit around Mars and planned to orbit Earth’s Moon, it is 
possible to map all landing hazards larger than a few meters 
across. Planned precision navigation capabilities will allow 
avoiding such hazards based only on orbital mapping. However, 
slopes on the scale of a lander (e.g. < 6 m across) and rocks that 
could be fatal to a lander (eg. < 3 m in diameter and > 50 cm 
tall) may not be detected from orbit. Many sites of scientific 
interest on Mars, in the lunar highlands, and on other moons 
and asteroids have rock distributions high enough to create a 
landing failure probability of several percent for blind landers. 
In contrast, the Mars Science Laboratory (MSL) lander/rover in 
development for a 2009 launch will accept a landing failure 
probability due to rock impalement of only 0.25%. For a blind 
landing, this rules out well over half the surface of the planet. 
Recent imaging from the HiRISE camera on the Mars 
Reconnaissance Orbiter (MRO) for Phoenix mission landing 
site selection revealed high boulder concentrations near the 

North Pole of Mars, areas previously considered benign for a 
lander. Therefore, increasing the accessible surface area 
requires even higher resolution orbital imagery and/or onboard 
landing hazard detection (HD) and avoidance capabilities. 

Sensors options for HD have been studied for many years, 
including lidar, radar, and passive imaging [1,2]. Lidar and 
radar are attractive because they are direct ranging sensors 
applicable at relatively high altitudes. However, many factors 
make passive imaging attractive, including a shorter 
development cycle, potential for smaller size, lower power 
consumption and lower cost [2]. Landers typically carry descent 
cameras for scientific imaging that could also be used for HD. 
A navigation camera may also be needed at high altitude for 
landmark recognition for precision navigation. Such camera can 
also be used for HD. 

There are still many passive imaging options, including use 
of color, texture, shading, structure from motion (SFM), stereo, 
and visible vs. thermal spectral bands. Any selected option also 
must have a statistical model of hazard detection performance 
that has been validated experimentally. The goal of modeling is 
to show that the probability of landing failure is within 
acceptable limits. 

Section II examines planetary landing scenarios to identify a 
set of sensor/algorithm alternatives with broadest applicability 
and to determine nominal sensor performance requirements. 
The conclusion is that stereo vision and shadow analysis appear 
to cover the widest set of missions with the least complexity. 
Section III summarizes algorithms we have developed to date 
for slope estimation and rock detection with these sensing 
modalities. Sections IV and V describe performance modeling 
and evaluation work for stereo-based and shadow-based hazard 
detection. Section V incorporates these results into an overall 
model of safe landing probability with these sensors. This work 
also represents a case study in vision system reliability 
modeling for autonomous navigation that is applicable to lidar 
and may be valuable in other contexts.  

II. LANDING SCENARIOS AND SENSOR OPTIONS 
Mars is one of the most challenging places to do landing 

hazard detection because the rapid descent affords a short time 
for hazard detection and because the atmosphere constraints 
when sensing can be done and also reduces image contrast. 
Thus we use a Mars landing scenario as a design driver, since 
solutions that work from Mars should apply to most target 
bodies.  



The descent sequence designed for the upcoming MSL 
mission provides a well-defined reference scenario. This 
includes a lateral divert maneuver starting about 1.2 km above 
ground level (AGL) and ending about 100 m AGL to get clear 
of the parachute; the lateral movement covers about 25% of the 
starting altitude. Doing precise terrain relative navigation 
(TRN) by map matching before this point will allow such a 
maneuver to be targeted to avoid large hazards known from 
orbital reconnaissance, such as craters up to ~ 100-200 m in 
diameter [3]. Detecting small scale hazards before or during this 
maneuver is impractical for several reasons: (1) it would be 
expensive because it would require very high sensor angular 
resolution over a wide field of regard, (2) it would require very 
accurate navigation to guarantee avoiding all small scale 
hazards from more than 1 km away, and (3) during the 
maneuver the high spacecraft attitude rates would make it 
difficult to obtain low smear, high SNR terrain images aimed at 
the right place(s) on the ground. At the end of this divert, 
descent is vertical and relatively slow, so HD is possible at this 
point to enable a second maneuver of 1-2 lander diameters to 
avoid small-scale hazards, such as rocks. Thus, performing HD 
at or below ~ 100 m AGL appears to be most practical for 
MSL-like missions. 

With descent imagery, color, texture, and shape from 
shading are not promising for HD for a variety of reasons, 
including results from prior missions that show negligible color 
variation on asteroid Eros [4] and the impracticality of getting 
metric slope and rock size information with sufficient accuracy 
from texture and shading. Contrast in thermal imagery can 
discriminate rocks from soil over part of the diurnal cycle [5]. 
However, to minimize cost we would like HD and landmark 
matching to use the same camera; since the vast majority and 
the highest resolution orbital mapping imagery is visible 
spectrum, this is a disadvantage to using thermal imagery for 
HD. 

Shadows can be used to recognize hazardous rocks from 
altitudes of 1 km or more [2], but this does not enable slope 
estimation. SFM can enable slope and rock detection if 
maneuvers are practical that give adequate parallax and enable 
aiming the camera at the landing site from two or more 
locations on the descent trajectory. This may be practical for 
missions to small bodies, like comets and asteroids, but it is 
costly and difficult for large bodies, like Mars. Binocular stereo 
baselines of ~ 1 m or more appear to be feasible for most 
landers and can enable slope and rock detection at altitudes up 
to about 100 m. Given that this fits the challenging reference 
mission scenario described above, stereo vision is our primary 
approach. Shadow analysis can augment rock detection for 
small incremental runtime cost and can significantly increase 
rock detection altitude for missions where that is needed, so we 
include shadows in our approach. Based on our current 
knowledge of hazard densities around the solar system, this 
approach is applicable to most or all lander missions. As we 
discuss below, the speed, reliability, and hardware maturity of 
this approach makes it a candidate for missions in about five 
years. 

Interest remains in lidar for HD, particularly for robotic 
landers in permanently dark regions of the lunar poles and for 
crewed landers; however, it appears lidar is further from 

maturity for lander applications. The HD algorithms and 
performance modeling we apply to range data from stereo are 
applicable to lidar as well. 

III. SUMMARY OF HAZARD DETECTION ALGORITHMS 
We have developed three vision algorithms for the small 

scale hazard detection: (1) Stereo-based slope estimation; (2) 
shadow-based rock detection and (3) stereo-based rock 
detection.  This section briefly summarizes the algorithms; the 
following section describes their performance. 

Fig. 1 illustrates the dataset (wall dataset) used in most of 
our experiments on hazard detection. The stereo rig included 
two 1600x1200 cameras with a 1 m baseline. The cameras 
horizontal and vertical FOVs are 22o and 18o respectively. At 
least 30 images were collected every 10m from 10m to 100m 
“altitude.” Ground truth range data was collected using a Leica 
Total Station. We also recorded Sun azimuth and elevation 
angles to supplement evaluation of shadow-based rock 
detection. 

 

Fig. 1. The wall dataset with ground truth used to evaluate stereo-
based slope and rock detection and to supplement evaluation of 
shadow-based rock detection. 

A.  Stereo-based Slope Estimation 
We use a real-time stereo algorithm that uses five 

overlapping correlation windows (SAD5) to improve range data 
quality along object borders [6]. We are currently implementing 
this algorithm in field programmable gate arrays (FPGAs) and 
expect to be able to make it operate on 1024x1024 pixel 
imagery at 10 frames/second (fps) or more [7]. Fig. 2 illustrates 
a stereo result applied to the wall data at 40 m altitude. 

 The slope estimation algorithm uses the range data from 
stereo matching to produce a slope estimate by robust plane 
fitting. The algorithm has been tested with data that simulates 
“altitudes” up to 100m to produce slope error vs. latitude 
assessments relative to lander scale slopes. The algorithm 
consists of two steps: 



 
The slope estimation algorithm uses the range data from 

stereo matching to produce a slope estimate by robust plane 
fitting. The algorithm has been tested with data that simulates 
“altitudes” up to 100m to produce slope error vs. latitude 
assessments relative to lander scale slopes. The algorithm 
consists of two steps: 

1)  An elevation map is produced by SAD5 stereo matching. 
2)  A slope estimate is obtained from robust plane fitting. For 
this we first perform a least median square fit that includes the 
rocks (outliers) on the surface. The process is repeated for 
multiple triplets of points. If the median of the squared plane 
error is a minimum, we keep these points. Next we discard 
points far from the plane and apply a least squared fit to the 
remaining points to obtain the slope estimate. Fig. 3 shows an 
example of plane fitting (red) applied to the wall range data 
(white) at 30m and at 70m. 

 

 
B.  Stereo-based Rock Detection 

  
We first apply SAD5 stereo to obtain an elevation map and 

underlying surface plane. Then we apply rock detection in four 
steps (see Fig. 4):  
1) Threshold the residuals from a robust plane fit. 
2) The regions over the 1σ threshold are extracted. Then we 
estimate the deviation from the plane fit.  
3) Extract potential rocks from connected components and 
discard noise regions. 

4) Estimate rock height and position by averaging the n highest 
range points in each region. We typically use n = 25. This 
reduces noise in the estimates considerably. 

  

C. Shadow-based Rock Detection 
The ability to detect rock hazards at much higher altitudes 

than stereo can enable early detection of rocks in the scale of 
the lander and thus enables early assessment of hazards and 
diverts operations with reduced effects on the fuel budget. A 
possible target mega-pixel sensor (12o FOV) images a 1m 
diameter rock in 5 pixels at 1000 m, enables such early for rock 
hazard detection. The cues to the presence of rocks are the 
shadows they cast. Although restricted in applicability by a 
suitable range of illumination angles, by available shadow 
saliency, and by the imager resolution, the expectations for 
these combine favorably to enable this relatively 
straightforward vision task to become useful to landers in 
general. 

The shadow-based rock detection algorithm has been 
described in detail in [2] and we only summarize it here. It 
consists of four steps, illustrated in Fig. 5: 

1) Image acquisition and state instantiation. State 
instantiation refers to an environmental state (Sun angles, 
shadow contrast) and a spacecraft state (altitude, pose).  
2) Shadow Segmentation. Shadow regions are segmented by 
applying a modified Maximum Entropy Thresholding (gMET) 
algorithm [2]. In this method, the shadow regions are 
segmented by analysis of the histogram of a modified version 
of the input image. The modified image is computed by adding 
a gamma-corrected version of the image to the original image 
and allowing bright areas (non-shadows) to saturate at the 
image bit-depth.  
3) Shadow Analysis. The aim here is not to derive accurately 
delineated rock models thus we do not perform explicit shadow 
casting to shadow cast correspondences. We also expect some 
measure of shadow blending and merging, and we do not make 
attempts to segment the shadows individually. Instead, we fit a 
“best-ellipse” as described in [2] to the shadow regions that are 
larger than a certain size (typically 5 pixels) and process those. 
The local ground sampling distance (GSD) is known from 

30m

70m

30m30m

70m70m  
Fig. 3. Underlying surface plane fit applied to 3D range 
data from SAD5 stereo for two different altitudes. 
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Fig. 4. Stereo-based rock detection: 1) Robust plane fit to 
range data. 2) Threshold fit residuals at 1σ above the surface 
plane. 3) Extract potential connected rock points. 4) Remove 
noise (small) regions and estimate rock height and position. 

Fig. 2. Sample SAD5 stereo vision range imaging results. Upper 
right: brick wall with several synthetic rocks viewed from 40 m 
distance. Upper left: false color range image; red is closest and 
magenta is furthest. The overlaid rectangle shows the area used 
to evaluate plane fitting for slope estimation. Bottom: 3-D 
rendering from below. The numbers above the rocks denote their 
true height in cm. 



altitude measurements and sensor specs. 
4) Rock Modeling. A circular cross-section model (cyan in 
Fig. 5) is sufficient for our purposes. The parameters of the 
shadow elliptical approximation are combined with the Sun 
angle information to estimate shadow length and width, and 
rock height and location.  
  

   
 

IV. HAZARD DETECTION PERFORMANCE 

A. Slope Error Alalysis 
The slope uncertainty model incorporates the following six 
factors (see Fig. 6) 
• The stereo imager baseline length (dX): 
• Surface plane with  respective to left camera  
• Imager focal length (f) 
• Correlation matching error  
• The size of  measured surface patch  
• The number of pixels (inliers) on the surface plane 
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Fig. 6. The stereo-based surface slope estimation model. 

  
   Consider an underlying surface P represented 
by . The left camera is located at (0, 0, 0) 
and the right camera at (dX, 0, 0).  Let a homogenous point Q

1321 =++ ZpYpXp
c1 

in the left camera plane be (xc1, yc1, 1) and its projection on P 
given by:  

( ) )/(1 3121111 pypxprwhererryrxQ cccc ++=  

The point Q in the right camera frame is ( )rrydXrx cc 11 − . 
Then its projection in the right camera plane (xc2, yc2) is: 

12

3121112 )1(
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yy
dXpdXypxdXpx

=
−−−=         (1)                  

Expressing (1) from camera frame to image frame gives: 

12
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where f is the focal length, (x0 , y0 ) is the camera center. 
 

   We rewrite the first equation in (2) to: 
1312112 AXayaxax =++=                          (3)                

where Fig. 5. Sample results for shadow-based rock detection. 1) The 
input image represents the data and associated environmental 
conditions, lander parameters, spacecraft state. 2) Shadow 
segmentation. 3) Shadow analysis, 4) Rock model (position, 
diameter and height). 

TP
p
p
p

fdXdXydXx
dX

dX

a
a
a

A =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

003

2

1

00
00

 

   If the coefficients (a1, a2, a3) are known, the surface plane (p1, 
p2, p3) can be easily derived by simple linear manipulations as: 

ATP 1−=                                     (4)                 
   Next, assume that each pixel in a patch of left image (a<x<b, 
c<y<d) is matched to the right image and that the matching 
error follows a Gaussian zero-mean distribution. The 
coefficients (a1, a2, a3) can be estimated by a least square 
method: 

min)()()( 21
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where COV(X2)-1 is the inverse of the measurement error 
covariance matrix. 
    
   The covariance matrix of A can be obtained by linear error 
propagation as: 

               (6)                 1
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Therefore the covariance matrix of P is: 
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   The covariance of slope θ is then: 



( ) ( )
KPCOVK

KdpdpdpdpdpdpKCOV
T

TT

)ˆ(

)ˆ( 321321

=

=θ (10) 

 
The 1σ slope error plots for the 10m to 100m span, 

illustrated in Fig. 7, show that for the wall surface (5.6 m by 
2.8 m) the slope error is smaller than 3o for 1σ at 100 m. The 
analytical model described predicts that for a wall twice as 
large, the slope error would be smaller than 1.5o at 100m.  

 

 
B. Stereo-based Rock Detection 

In this section, we develop a model for rock detection and 
false alarm probabilities for the rock wall data set specifically 
and compare the model to experimental results; in section V, we 
extend this to an overall model for the probability of a 
successful landing given a more general distribution of rock 
sizes at the landing site. 

Our detection and false alarm models for rocks are based on 
simple, Gaussian models of uncertainty in estimated rock 
heights above the nominal ground surface. To derive these, we 
introduce two new parameters for HD, illustrated in Fig. 8. The 
first denotes the lander rock tolerance T. A rock taller than T 
could cause a mission failure. The second parameter is the HD 
algorithm threshold t, used to decide whether or not a detected 
rock is a hazard. Given the uncertainty in rock height 
estimation, t is set below T to minimize missed detection of true 
hazards at the expense of an increased false alarm rate. An 
appropriate setting for t is then that which minimizes the 
probability of mission failure (Section V). 

  The height uncertainty model treats rock height estimation 
as zero mean Gaussian with range uncertainty (σ). In theory: 

dX
kivFOVd ⋅⋅

=
2

σ
                           (11) 

where d is the range in meters to the ground surface, ivFOV 
is the angular resolution of the sensor in mrad. k is the pixel 
precision, and dX is the stereo baseline in meters. 

 
 

 
    The model uses a fixed number of range points on the 
ground surface as clutter, also represented by a zero mean 
Gaussian. The probability of detection, Pd, and the false alarm 
rate (FAR) are computed by integrating the tails of the 
Gaussian distributions. 
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where H is the rock height . 
   

The experimental results using the wall data set and the 
analytic model are shown in Fig. 9. Note that below 60 meters 
“altitude” stereo-based HD has almost perfect detection.  

 

 
 

C.   Shadow-Based Rock Detection 
We have tested shadow-based rock detection with aerial 

images of a rock field on Mars Hill in Death Valley, California. 
A small portion of one such image was shown earlier in Fig. 3. 
The dataset does not have rock height ground truth, but it 
includes seven different sun incidence angles between 30o and 
70o off nadir. We manually registered these images and 
manually constructed ground truth of rock footprints by 

Fig. 9. The hazard detection and false alarm rate comparison 
between analytic and experimental results of the wall data set.   
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Fig. 8. The lander rock tolerance threshold T (red line) and 
algorithm threshold t (black line). 

Fig. 7. The surface slope estimation errors comparison 
between the analytic model and experimental study. 



outlining rocks in the imagery. We then computed the average 
detection and false alarm rates for 136 reference rocks with 
diameters greater than 5 pixels in the imagery over the seven 
sun incidence images of the same location shown in Fig. 5. The 
plots shown in Fig. 10 summarize the results. The overall 
probability of detecting rocks with diameters ≥ 5 pixels was 
85% with an average of 3 false alarms per image. Perfect 
performance (100% detection with no false alarms) was 
achieved for rocks ≥ 25 pixels in diameter. These results can be 
used to choose the camera field of view and operating altitude 
to achieve a desired level of reliability in shadow-based rock 
detection. For example, if hazardous rocks have diameters of 1 
m or more, operation at 200 m altitude is desired, and a 
performance equivalent to the 25 pixel diameter case in Fig. 9 is 
desired, the camera angular resolution must be 0.2 
milliradians/pixel. Since true rock height was not available with 
this data set, we did not try to evaluate height estimation. 

 
A number of experiments were conducted using the wall 

dataset.  Fig. 11 shows a result for a simulated wall image at 
400 m distance. The ground sampling distance (GSD) for this 
image is 11.2 cm and the RMSE of the difference between the 
measured height (magenta bars) and actual rock heights (cyan 
bars) is 1.8 cm, i.e. 5.4% of the average true height (33 cm) of 
the rocks. 

These experiments suggest that error in height estimation 
grows nearly linearly with altitude. Rock heights can be 
compensated for sun aureole angle which explains in part the 
consistent height underestimates. The angle subtended by the 
Sun from the Earth’s point of view is about 0.5 degrees and the 
forward scattering by the Sun’s aureole [8] and can result (on 
Earth) in a total subtend angle of up to 5o [9]. The net effect is a 
penumbra along the shadow boundaries that has a width 
proportional to the rock height. The penumbra represents a 
transition zone from direct to diffuse illumination resulting in 
under segmented shadow regions, thus the underestimate in 
rock height.  

The Mars Reconnaissance Orbiter (MRO) entered Mars 
orbit in the Fall of 2006. Among its instruments it carries the 
High Resolution Image Science Experiment (HiRISE) 
instrument. From an altitude of 300 km and with an FOV of 
1.14o x 0.18o it is capable of acquiring image swaths 20,264 
pixels across having a resolution (GSD) of 30 cm/pixel. The 

swath length is typically twice the swath length, thus covering 
an area 6.2 km x 12.4 km. The instrument was targeted from 
December 2006 to March of 2007 to acquire high resolution 
images overlapping three potential landing sites for the Phoenix 
Mission, scheduled for launch in August of 2007. The 36 GByte 
dataset covers an area of approximately 1,500 km2 in 46 
HiRISE images at ~ 30 cm/pixel GSD. At this resolution and 
given the favorable sun elevation angles (approx. 60o 
incidence,) the shadow-based rock detection algorithm was 
applied to map large rocks, on the order of 1 m or larger.  

 

 
 A rock mapping algorithm, derived from the real-time HD 

algorithm described above affords the additional computational 
cost needed for a more refined analysis of the shadows detected 
at the available GSD, and the processing of the very large 
images in the dataset. These modifications include analyzing 
the detected shadow regions in more detail to attempt to 
separate merged shadows from adjacent or close rocks. A 
second refinement analyses the terminator (the illumination 
boundary between the rock and its self shadow.) Certain terrain 
features in the scale of the lander cast shadows having lengths 
comparable to those of rocks. Current risk assessment methods 
are primarily concerned with rock hazards rather than general 
hazards. Many of these features are elongated and can be 
discerned from the aspect ratio of the shadows they cast. 
Fragmented features however do occur as well, where the 
fragments have sizes similar to large rocks. The analysis of the 
illumination gradient along the illumination terminators has 
been highly successful in discriminating these from large rocks. 
The mapping algorithm is able to generate a rock description 
record (position and size of individual shadows and rock 
models) for an entire HiRISE image in a few minutes. Overall, 
over 10 million rocks were detected and mapped. Fig. 12 
illustrates a “Box”, one of three 150 km x 75 km areas 
designated for study. 

 
Fig. 11. Shadow-based rock detection from wall dataset simulated 
to 400m altitude. The bar chart compares true (cyan) to estimated 
(magenta) rock height. The error in height estimation grows 
nearly linearly with altitude.

 

Fig. 10. Shadow-based rock detection. Average detection for 
seven different sun angles. The minimum number of pixels in a 
shadow region is 5. 
  

With such large areas under consideration, we expect 
variations in the terrain. Fig. 13 illustrates five representative 
terrain types in the dataset. Four of them represent areas away 
from craters whereas the areas near craters typically have large 
concentrations of rocks, many of them boulders that can 
severely impact a lander. 

Fig. 14 shows an illustrative result of rock detection from a 
small portion of a HiRISE imagery. The final set of shadows 
detected (analyzed shadow regions larger than 5 pixels) are 
illustrated on the bottom by their approximated ellipses. Rock 
models giving the position and estimated sizes (diameter and 
height) are derived from these. 



 

      

 

We compared automatic counts with hand counts and with 
surface counts. These counts are generated by teams led by 
geophysical scientist that choose and certify landing sites. 
Hand counts result from manual measuring of less than 200 
rocks from small portions of the high-resolution images. 
Typically two windows are chosen from each image to count 
and measure rocks in one high- and one low-rock density 
areas. High rock density windows are typically 300 pixels x 
400 pixels (10 m x 1 2m) with about 140 rocks. Low rock 
density are about 800 pixels x 800 pixels (240 m x 240 m) and 
contain about 30 rocks. So far, about some 50 such windows 
have been processed manually. Surface counts are the result of 
an extended effort to count and map the rocks at the landing 
sites of previous Mars missions. In particular, the Viking 
Landers (VL 1 and VL 2) and Mars Pathfinder (MPF.) Such 
mappings have been instrumental in the derivation of the rock 
abundance models we described above [11,12]. For these 
comparisons we used the model coefficients derived form VL2 
surface counts derived using monocular and stereo tools 
applied to the images acquired by the lander sensors. For 
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Fig. 13. terrain types in the dataset. (a) Well defined 
polygons (5-10cm relief at edges) with very few rocks. (b) 
Boulder clusters interspersed with boulder-free polygonal 
terrain. (c) Low to medium-density rocks uniformly 
distributed across surface (d) Rippled terrain with very few 
rocks or rock-free. (e) Rocks along border of filled-in crater. 
The boulder on the top left is 4.6 m in diameter 
 

Fig. 12. Potential landing ellipses and HiRISE image coverage for 
“Box 1”. With a GSD of 30 cm,  rocks 1 meter or larger are 
clearly visible. HiRISE images in the dataset are typically 20,048 
pixels across by N pixels long, with N varying from 10,000 to 
100,000 pixels. (ADD SCALE markers) 



automatic mapping we used portions of the HiRISE images 
that include the landers. Both manual and surface count 
comparisons have been accepted by the respective geophysical 
scientist and collaborators that collected that data, and the full 
set of automatic mapping results together with the statistics and 
maps derived from them are being used to help in the site 
selection task.  Fig. 16 illustrates one such comparison for the 
VL2 landing site.  

 

 
Fig. 15 illustrates results for an entire HiRISE image 

covering approx. 6 km across by 18 km. Density and thematic 
maps are derived from the full rock population in a straight 
forward manner at any level of granularity. In this example the 
map cells are 100 m x 100m. The color scale of the density 
map (center) represent number of rocks having diameters of 1 
m or larger. The color scale of the thematic map denotes ranges 
of rock density related to rock abundance (see caption.) 

 

 
 

Fig. 15. The HiRISE image (right) covers an area 6 km 
across by 18 km. The color-coded density map (center) 
represents number of rocks, larger than 1m, in 100 m x 
100m cells. The thematic map (left) encodes density 
related to rock abundance, and N, the cumulative fractional 
area (CFA [12]) covered by rocks having a diameter 1 m or 
larger: Green: <= 4 rocks/Ha      (~ 5% CFA); Yellow:  
4<N<32 rocks/Ha (~10-15% CFA); Orange: 32<N<=128 
rocks/Ha (~10-20% CFA); Red: N>128 rocks /Ha (> 20% 
CFA) 

 

 
Fig. 14. Detail view of rock field and shadows detected and 
approximated by ellipses. The smallest rock diameter is about 70 
cm. 



 

V.  SAFE LANDING PROBABILITY MODEL 
   A great deal of work has been dedicated to Martian rock 

distributions and selecting safe landing sites on Mars over the 
last few years [11,12].   The distributions model (also called 
rock abundance model), is given in terms of the cumulative 
fractional area covered by rocks as a function of rock diameter. 
The Martian rock abundance varies from 0 to up to 40%. (Fig.. 
17) For example, the MSL is targeting to land a rover to the 
terrain less than 10% rock abundance with landing failure 
probability due to rock impalement less than 0.25%.  

 Although we are more interested in rock height, the 

statistical studies suggest a relationship between diameter and 
height [11]. For consistency with these studies we use rock 
diameter in our models below without loss of generality.  

 

 

 

 
 

Fig. 17.  Rock abundances for selected Mars missions. Mars 
Pathfinder (MPF) , ~20%; Viking Lander 1 (VL1), !7%; Viking 
Lander 2 (VL2), 18%;  Bonneville, ~ 32%; Mars Hill (on Earth, 
image shown), ~22%. 

The model we present here is suitable for both for both 
stereo and shadow based rock detection. Although their errors 
are influenced by different factors, they are assumed to follow 
Gaussian distributions. For example, the shadow-based rock 
detection error varies from 10%, mostly dependent on sun 
aureole effects, to 50% for the worst case rock shape, i.e. a 
hemispherical rock. The range is valid for Sun incidence angles 
between 30 and 70 degrees, our target range.  

 
Referring to Fig. 18, the probability of FN (false negatives 

or, missing a hazard rock) and the probability of FP (false 
positives, or misdetecting a non-hazardous rock as a hazard) are 
given by: 

 
Fig. 16. Validation of automatic rock detection. (top) 
Viking Lander 2 (at center of image) landing site. The 
plots represent rock distributions. The surface counts 
were provided by Matthew Golombek of the Jet 
Propulsion Laboratory and hand counts by Prof. 
Raymond Arvidson of the Washington University in 
St. Louis). 

Fig. 18 Uncertainty in the diameter (or height) of a detected 
rock is modeled by a Gaussian distribution, T represents the 
mechanical hazard threshold or rock tolerance and t represents 
the algorithm hazard threshold.  
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where, D represents rock diameter. Next we apply these 
uncertainty models to models of rock distributions. Golombek, 
et. al. [12] defines a rock distribution F as a cumulative 
fractional area distribution of rock diameters for a given 
abundance: 
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Where Ca and Cb are constants and k represents rock 
abundance, the percent of the area covered by rocks. In our 
model we prefer to describe the rock populations instead by a 
distribution of the number of rocks of diameter D per square 
meter. We have: 
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The expected numbers of missed (FN) and misdetected 
(FP) rock hazards, per unit area, are respectively given by: 

∫
∞

=
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The expected number of true hazard rocks (HZ) per unit area 
is: 

dDDkfTkN
THZ ),(),( ∫
∞

=                       (19) 

The expected number of detected hazard (DH) rocks per unit 
area is then: 

),,(),(),,(),,( TtkNTkNTtkNTtkN FNHZFPDH −+= (20)  
 
Let us now consider the probability of mission failure from 

a blind landing, i.e., a landing without a hazard detection 
capability. For that we follow the suggestion of [10] and 
consider that the number of rocks per unit area is modeled by a 
Poisson distribution. The probability of exactly n rocks in any 
given area is given by: 

 
(21) 

 
 

With AL denoting the area of the lander, λ then represents 
the expected number of hazard rocks under the lander.  

During a blind landing, the probability of failure (pf), i.e. 
that at least one rock of a given size, or larger, is within the area 
AL  is: 
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Now, the probability of mission failure (MF) with perfect 

hazard detection, and the availability of m non-overlapping 

landing sites is equivalent to the probability of all m sites 
having at least one hazard rock: 
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The probability of successfully finding at least one site free 
from rock hazards would be: 

 
m
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Now, using (17), the probability of not landing on a false 
negative hazard is: 
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The probability of finding a safe site, with m non-
overlapping sites available to divert to, is equivalent to the 
probability that at least one of them is free from any detected 
hazard. Using (20) we have that: 
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The probability of successful HD landing is then: 
 

),,,(),,(),,,( mTtkPTtkPmTtkP safesitesafesuccess ⋅=    
(27) 

The analytical model of probability of a successful landing 
provides a tool not only to estimate such probabilities but also 
to compare blind landing to landing with hazard detection 
vision capabilities. Fig. 19 shows plots of such comparison 
instantiated for MSL mission parameters, i.e., a rock tolerance, 
or mechanical threshold T, of 60 cm, and a 4 m2 lander 
undercarriage. The stereo HD plot (green) is for a sensing 
altitude of 70m. Note that this prediction is consistent with the 
wall results at 70m observed in the error propagation model 
described in Section IV (see also Fig. 9) for the wall dataset. 
The safe landing probability predictions applied to shadow-
based detection are also illustrated in Fig. 19. The blue plot 
corresponds to the 5.4% height errors from the wall dataset at a 
simulated 400 m altitude (illustrated above in Fig. 11) The red 
plot corresponds to a worst-case shape idealized hemispherical 
rocks illuminated by a 50o Sun incidence angle, and assumes 
that 30% of the rocks are pyramidal, i.e., not detected because 
they do not cast shadows. Note however the doubling of rock 
abundance for a given level of safety. The MSL probability 
goal is at 0.9975%. 
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VI. CONCLUSION 
We used a Mars landing scenario as an extreme case of a 

fast, near-vertical descent to motivate sensor selection for 
landing hazard detection. This and considerations of 
minimizing mass, power, and volume while maximizing 
relevance to other missions led us to conclude that stereo vision 
and shadow analysis with descent cameras appear to be the 
smallest sensor suite with the widest applicability, given the 
state of development of sensor alternatives today. We then 
outlined algorithms we have developed to date to detect slope 
hazards with stereo vision and rock hazards with stereo vision 
and shadow analysis. We derived analytical performance 
models for these based on Gaussian noise models, compared the 
prediction of those models to experimental data, and found 
reasonably good agreement. This implies that the models are 
useful for predicting performance of these functions in 
operational scenarios. Therefore, we then embedded the hazard 
detection performance models in a model for the probability of 
landing safely, given parameterized models of lander rock 
tolerance, lander area, and parameterized rock size/frequency 
distributions fit to Mars and terrestrial data. When this model is 
instantiated for parameters of the MSL mission, it predicts that 
even very conservative assumptions about the performance of 
the vision system will reduce the probability of a failed landing 
by at least a factor of four compared to a blind landing for any 
rock abundance. Conversely, for the level of safety desired by 
MSL, it predicts that the vision system would allow access to 
roughly triple the fraction of the planet as a blind landing. This 
would represent a major improvement in access to sites of 
scientific value for a small increase in sensor payload. 
Analogous benefits should accrue to missions to other bodies in 
the solar system. 

 

 
 

AKNOWLEGMENTS 
The research described was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, sponsored by 
the Mars Technology Program under NASA Mars Exploration 
Program Advanced Technologies NRA OSS-03-01) and NASA 
New Millennium Program (NMP) ST9. The authors are 
grateful to Dr. Adnan Ansar of JPL and to Dr. Andrew Johnson 
of JPL for useful discussions on the analytical performance 
models. 

REFERENCES 
 
[1] Andrew E. Johnson, Allan Klumpp, James Collier and Aron 

Wolf, “Lidar-based Hazard Avoidance for Safe Landing on 
Mars,” AIAA Journal of Guidance, Control and Dynamics 25 
(5), October 2002. 

Fig. 19. Landing with HD capability compared to blind 
landing instantiated for MSL parameters (60 cm rock 
tolerance, 4 m2 lander undercarriage.)  The success 
probability is the product of the probability of no detections 
and the probability of no missed detections. The green plot 
predicts stereo-based probability with sensing from 70 m 
altitude. The blue plot is for the wall simulated 400m 
altitude result in Fig. 11. The red plot is for idealized 
hemispherical rocks at 50o incidence illumination.   

[2] A. Huertas, Y. Cheng, & R. Madison, “Passive Imaging Based 
Multi-cue Hazard Detection for Spacecraft Safe Landing,” Proc. 
IEEE Aerospace Conference, Big Sky, MO. Mar. 2006. 

[3] L. Matthies, A. Huertas, Y. Cheng and A. Johnson, “Landing 
Hazard Detection with Stereo Vision and Shadow Analysis,” 
Proc.  Infotech@Aerospace2007 Conference, Rohner Park, CA, 
May 2007. 

[4] J. Vevrka et. al. “Imaging of Small-Scale Features on 433 Eros 
from NEAR: Evidence for a Complex Regolith,” Science, Vol. 
292. no. 5516, Apr. 2001, pp. 484 – 488. 

[5] P. Christensen, et al “Morphology and Composition of the 
Surface of Mars:Mars Odyssey THEMIS Result”, Science 300, 
2056 (2003). 

[6] H. Hirschmueller, P. Innocent, and J. Garibaldi, “Real-time 
correlation-based stereo vision with reduced border errors,” Int'l 
Journal of Computer Vision, vol. 47, no. 1-3, pp. 229.246, April-
June 2002. 

[7] C. Villalpando, “Acceleration of Stereo Correlation in Verilog”, 
9th Military and Aerospace Programmable Logic Devices 
(MAPLD) International Conference, Washington, D.C., 
September 2006. 

[8] M. Box and A. Deepack, “Finite Sun Effect on the Interpretation 
of Solar Aureole,” Applied Optics, Vol. 20, No. 16, Aug. 1981. 

[9] F. Mims, “Solar Aureoles Caused by Dust, Smoke and Haze,” 
Applied Optics, Vol. 42, No. 3, Jan. 2003. 

[10] Harold W. Sorenson “Parameter Estimation”, Marcel Dekker, 
Inc.1980 

[11] D. Bernard and M. Golombek, “Crater and Rock Hazard 
Modeling For Mars Landing,” AIAA Space Conference, 
Albuquerque, NM Aug. 2001. 

[12] M. Golombek, et. al., “Rock Size-Frequency Distributions on 
Mars and Implications on Mars Exploration Rover Landing 
Safety and Operations,” Journal of Geophysical Research, Vol. 
108, No. E12, 2003. 

http://www-robotics.jpl.nasa.gov/publications/Andrew_Johnson/aejJGCD2002.pdf
http://www-robotics.jpl.nasa.gov/publications/Andrew_Johnson/aejJGCD2002.pdf

	I.  Introduction
	II. Landing Scenarios and Sensor Options
	III. Summary of Hazard Detection Algorithms
	A.  Stereo-based Slope Estimation
	B.  Stereo-based Rock Detection
	C. Shadow-based Rock Detection

	IV. Hazard Detection Performance
	A. Slope Error Alalysis
	B. Stereo-based Rock Detection
	C.   Shadow-Based Rock Detection

	V.  Safe Landing Probability Model
	VI. Conclusion
	Aknowlegments
	References


