Global Surveillance
The Advantages of New Vantages for Earth Science:

Earth Observing Strategies:
Options and Analysis

Gordon Johnston
NASA Headquarters
Office of Earth Science
Outline

I. Aspects of Orbit Value
II. Range
III. Lighting/ Time of Day
IV. Geocoverage/ Geolocation
V. Correlation Between Range and Geolocation
VI. Space Mission Vantage Types
VII. New Technologies May Add Options
I. Aspects of Orbit Value

• Often Use Classifications Based On How Individual Missions Observe
 – Region of Electromagnetic Spectrum (e.g., Vis vs. IR, lidar vs. radar)
 – Spectral & Spatial Coverage & Accuracy (e.g., Imagers, Spectrometers, Radiometers)
 – Physics of Observation (e.g., In Situ vs. Passive Remote vs. Active Remote Sensing)

• This Paper Focuses on 3 Main Aspects of Orbits that Users Find Valuable
 – Range/ Continuity of Coverage
 – Lighting/ Time of Day
 – Ground-track Geolocation
II. Range

- Close Range for Resolution & Active Sensing
- Distant Range for Coverage/ Synoptic View
- Constant Range Can Simplify Instrument Design & Operation
 - Correlated to Rate of Spacecraft Motion
 - Affects Scanning Rates, etc.
Close Range for Resolution & Active Sensing

- **Diffraction Limit**
 - For Given Wavelength, Passive Resolution Driven By Range and Telescope Aperture
- **Range Strongly Affects Power Required for Active Sensing**

Common Approaches for Constant or Near Constant Range

• Circular (or Near Circular) Orbits:
 – Distant Circular Orbits to Achieve Synoptic Coverage
 • Geostationary (24 Hour Orbit Period)
 – LEO (Close) Orbits for High Resolution or to Reduce Active Sensing (Lidar/Radar) Power
 – Higher LEO and MEO Orbits to Balance Coverage and Power Requirements

• Highly Eccentric Orbits
 – Most of Orbit Spent Near Apogee
 • Molniya Orbits

• Earth/Moon and Earth/Sun Lagrange Points
 – Stable (but Distant) Locations
III. Lighting/Local Time of Day

- Similar vs. Different Lighting/ Time of Day
 - Ease of Comparison vs. Diurnal Sampling
 - Dependent Upon Goals of Specific Missions

- Generalized Rule For Optical Instruments
 - Spatial Resolution Instruments Prefer Sun Angles That Enhance Shadows for Feature Contrast
 - Spectral Resolution Instruments Prefer Sun Angles That Reduce Shadowing and Enhance Spectral Contrast

- Time of Day Effects on Subject Area
 - Correlations With Cloud/Fog Cover For the Areas of Interest
Common Approaches for Constant Lighting/Time of Day

• Close Circular Sun-Synchronous Orbits
 – Orbit Crosses Equator at Same Relative Time of Day
 • Secular Variation in Right Ascension of Ascending Node Matches Earth’s Rate Around the Sun
 • Requires Highly Inclined, Retrograde Orbit
 – Very Common
 • Weather Satellites, Landsat, IKONOS, etc.

• Earth/Sun Lagrange Points
 – Constant Lighting, but at Astronomical Distances

• Others Appear Possible
Common Approaches for **Variable Lighting/Time of Day**

- **Distant Circular Orbits:**
 - Geostationary (24 Hour Orbit Period)
 - Views Constant Geolocation At All Local Times of Day
 - 12 Hours of Daylight, 12 Hours of Night Coverage

- **LEO Orbits Designed to Provide Variable Lighting**
 - Example: TIMED Mission
 - Uses Same Effect As Sun-Synchronous Orbits, But With Opposite Sign
 - Secular Variation Adds to Effect of Earth’s Motion Around The Sun
 - Dawn to Dusk Four Times Per Year
Operational Value of Lighting/ Local Time of Day

• Constant Lighting Can Simplify Instrument Design & Operation
 – Exposure/Gain States
 – Aperture/Time Required to Collect Adequate Signal

• Spacecraft Solar Panel Illumination
 – Design Consideration for High Power (Radar, Lidar) Missions
 • Sun-synchronous Polar Orbits with 6 AM/6 PM Equatorial Crossing Provide Constant Solar Power (Except For Brief Period Near One Solstice per Year)
IV. Geocoverage/Geolocation

• Orbits Are Often Designed For Repeat Ground-Track
 – Subject Benefits
 • Spatially Correlated Observations
 • Direct Comparison of Time-Dependent Phenomena
 – More Predictable Operations
 • Instrument State Changes (Land/Sea Boundaries, etc.)
 • Ground-Station Passes, etc.
 – Examples: Exact Ground Track Repeat Every x Days
 • 1 Orbit per Day for Geostationary (Constant Geolocation)
 • Half-Day Orbits for GPS and Molniya Satellites
 – Nearly Same Geolocation for 11 Hours Per Day
 • 16 Day Repeats (233 Orbits) for Terra, Aqua, etc.
V. Correlation Between Distant Range and Constant Geolocation

• Distant Range Orbits Can Match or Nearly Match Earth Rotation Rate
 – Enables Constant or Near-Constant Geolocation
 • Geostationary: Constant Geolocation
 • Molniya: Near-constant Geolocation for 11 Out of 12 Hour Orbit (Alternate Sides of Earth)

• Move Away to See Finer Time Scales!
VI. Space Mission Vantage Types

<table>
<thead>
<tr>
<th>Range</th>
<th>Lighting/TOD</th>
<th>Geo-Location</th>
<th>Example Orbit Types</th>
<th>Mission Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>Variable</td>
<td>Non-Repeat</td>
<td>Non-Repeating Non-Synchronous Orbits</td>
<td>ISS</td>
</tr>
<tr>
<td>Close</td>
<td>Variable</td>
<td>Repeating</td>
<td>Repeat Groundtrack Non-Synchronous Orbits</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Similar</td>
<td>Non-Repeat</td>
<td>Non-Repeating Sun-Synchronous (Retrograde Polar) Orbits</td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td>Similar</td>
<td>Repeating</td>
<td>Repeat Groundtrack Sun-Synchronous Orbits</td>
<td>Landsat, Terra</td>
</tr>
<tr>
<td>Distant</td>
<td>Variable</td>
<td>Non-Repeat</td>
<td>GEO Transfer Orbits, MEO, HEO, Earth-Moon Lagrange</td>
<td>GOES</td>
</tr>
<tr>
<td>Distant</td>
<td>Variable</td>
<td>Repeating</td>
<td>Geosynchronous Orbits, Molniya Orbits</td>
<td></td>
</tr>
<tr>
<td>Distant</td>
<td>Similar</td>
<td>Non-Repeat</td>
<td>Sun-Earth Lagrange Points, Gap?</td>
<td>DSCO</td>
</tr>
<tr>
<td>Distant</td>
<td>Similar</td>
<td>Repeating</td>
<td>Potential Gap: ESSE Orbits?</td>
<td></td>
</tr>
</tbody>
</table>
VII. New Technologies May Add Options

- **Constant Thrust**
 - Shift Orbit/Maintain Lighting Alignment
 - “Bias” Geostationary Orbits Towards Polar Latitudes
 - “Bias” Lagrange Points Towards Earth:
 - Candidate Technologies
 - Solar Sails
 - Nuclear Electric

- **Technology Push vs. Science Pull**
 - Will Scientists Find New Orbits Useful?

Figure source: URL http://down.dsg.cs.tcd.ie/ipn/background/ob_techorbit1.html
Backup Slides
ESSE Orbit Comparison
9 Orbits/2 Days and 5 Orbits/Day

9/2 Orbit

Constant Sunlight

5/1 Orbit
Orbit Comparison
5/1, 9/2 ESSEO & Geostationary
ESSE Orbit

• Orbit That Precesses So That Apogee Remains Over Local Noon
 – Allows Two Satellites to Provide Continuous Daytime Coverage
 – Modeled Using Satellite Took Kit (Version 4.2.1)
 • J_4 Propagation
 • Full Year to Confirm Rotation of Apogee
 • Modeled Two Cases:
 – 9 Orbits Per 2 Days
 » Two Satellite Effective Daily Repeat Ground-track by Alternating Tracks Every Other Day
 » Maximum Apogee, Low Perigee (273 km.)
 – 4 Orbits Per Day
 » Daily Repeat Ground Track
 » Lower Apogee, Higher Perigee
ESSE Orbit

• 9 Orbits/2 Days
 – Two Satellite Effective Daily Repeat Ground-track by Alternating Tracks Every Other Day
 – Orbit Properties
 • Period: 5 hr. 20 min. 10 sec.
 • Eccentricity: 0.57
 • Altitude of Perigee: 273 km.
 • Altitude of Apogee: 17,976 km.

• 5 Orbits/Day
 – Orbit Properties
 • Period: 4 hr. 48 min. 8 sec.
 • Eccentricity: 0.49
 • Altitude of Perigee: 1,025 km.
 • Altitude of Apogee: 15,120 km.