
  

  

Abstract— NASA’s Earth Science Enterprise has established the 
goal of developing a predictive capability for the Earth System.  
NASA uses the vantage point of space to provide information 
about Earth's land, atmosphere, ice, oceans, and biota that is 
obtainable in no other way.  To enhance predictive capabilities, 
NASA is planning a sensor web to collect data across a range of 
spatio-temporal scales.  The end-to-end process of data 
collection, data assimilation, biogeophysical modeling and 
prediction is inseparable and predominately enabled by 
software.  Software transforms the raw data into usable 
products and information and software disseminates these 
products to end-users.  New information system technologies are 
needed to enable better prediction, flexible data assimilation 
and model coupling to build integrated Earth system models.  
Advancement of our modeling capabilities will require not only 
faster processing, but new programming methods, new 
algorithms, high-speed data pipelines, and interoperable 
architectures that allow the networking of diverse Earth System 
models.   

I. INTRODUCTION 

NASA’s Earth Science Enterprise Missions contribute to 
the multi-agency United States Global Change Research 
Program (USGCRP) and integrate with international 
scientific activities such as the World Climate Research 
Program and the International Geosphere-Biosphere 
Programme. The overall mission of NASA’s Earth Science 
Enterprise (ESE) is to enable improved prediction capability 
for the highly integrated and dynamic Earth system by 
developing a scientific understanding of the Earth system and 
its response to natural or human-induced changes. The 
USGCRP is also supported through NASA’s establishment of 
a long term commitment to improved Earth Science 
monitoring and prediction that relies heavily on air and space 
borne observations (data) of the Earth as well as field 
validation campaigns.  

These data are spatio-temporally heterogeneous, collected 
by a variety of instruments and of immense volume and 
dimensionality.  The raw data require extensive processing 
prior to their use as biophysical parameters in support of 
scientific inquiry, policy formulation and resource 
management.  The processing of large data holdings requires 

 
 

significant computational resources and scarce expertise in 
the interdisciplinary Earth and computational sciences.  
There are significant information system challenges posed by 
mission science requirements. 

In this new century there will be increasing societal needs 
for seasonal and interannual climate predictions, for 
environmental assessments, and for sophisticated model-
assimilated data sets to aid in the quantification of the 
biogeochemical processes that determine the balance of 
environmental parameters (i.e. temperature, water, winds, 
ozone, productivity, etc.). Many projects meeting these goals 
have grown out of basic research activities that have 
expanded to take on the responsibility of providing products 
to a broader community [1].  Sensor-web observations (data) 
and science models will need to be rapidly and cost effectively 
transferred into networked production systems to build 
products and assessments for public and private use.  

II. MODELING 

Models are essential tools for the development of scientific 
understanding. Modeling refers to those activities involved in 
building, applying, and validating biogeophysical models in 
software. The on-going refinement and development of new 
computational models that can simulate the dynamics of the 
Earth system is critical for the USGCRP. Models can be used 
in hind casting experiments to test hypothesis of how the 
Earth system behaves; and, models can be run in predictive 
mode to simulate the response of the Earth system to 
scenarios of future forcing and feedbacks on these forces by 
Earth system responses. These simulation activities are 
critical to providing the environmental assessments used to 
synthesize Earth science results and provide information to 
policy and decision makers [1].  

For purposes of discussing information technology, 
modeling can be roughly categorized as discovery or 
production.  Discovery modeling typically is PI led, often 
funded with grants, and oriented towards discovery and 
scientific inquiry of fundamental mechanisms within a 
discipline.  Production modeling is community led, 
interdisciplinary, and driven by the need to generate standard 
products, such as forecasts and monitoring the productivity of 
the Earth.  Often called high-end modeling, it requires larger 
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teams, budgets and computing resources, and often 
undertakes the unconstrained modeling of long-term 
scenarios.    

A. Discovery Modeling 

Discovery modeling finds new relationships and 
interactions by dividing, isolating and understanding specific 
components of the Earth System.  This incremental approach 
allows scientists to cope with the complexity of environmental 
phenomena, target specific important processes, and adapt 
solutions to available computational resources. Standard data 
products from other domains are used to interface with the 
system being studied.  Data may be obtained with a network 
link to a source, but more often input data reside locally and 
there is little need to access current data in real-time. The 
models are mechanistic and are built to convey 
understanding.  A mechanistic model computes intermediate 
variables and states that correspond to the measurable system, 
and when compared to observations, help verify model 
behavior. The system being studied is decomposed into basic 
empirical or geophysical relationships.   These basic 
algorithms reproduce behavior observed in the data and, 
when integrated, implicitly represent hypotheses about the 
system.   

1) Data volume and dimensionality  
The process of analyzing data to discover relationships for 

modeling is labor intensive and costly. Scientists are 
overwhelmed by the sheer volume of data collection enabled 
by modern technology [2].  A sensor–web will increase the 
potential for more data collection therefore, software is 
essential to aid the scientist and reduce data volume. Any 
algorithms used to aid the scientist and reduce data volume 
must originate in the discovery process before they can be 
implemented in data production or moved on-board.   

2) Knowledge discovery in databases 
Knowledge Discovery in Databases (KDD) is an 
interdisciplinary activity that automates the identifying of 
patterns and structure in large databases for discovering novel 
features and algorithms [3].  KDD involves visualization, 
artificial intelligence, knowledge management, and data 
mining, which in turn involves database statistics and 
machine learning.  This process is incremental and begins 
with (1) selection of hypotheses or phenomena to explore, (2) 
cleansing and preprocessing data to fill in missing 
observations, account for noise in the data and cope with time 
series, (3) the often necessary reduction of the size and 
dimensionality of data, which may  include extracting high-
level features in place of using raw data (e.g. extract and 
mine the trajectory of cyclones instead of mining the 
imagery).  Subsequent data mining is a complex process 
where the science goals must match the data, the mining 
method and the desired form of the new algorithm 
(regression, decision tree, classification rules, etc).  After 
mining, patterns must be interpreted (animated, plotted, 

visualized, etc.), and the KDD steps repeated to refine, 
concisely summarize and catalog the results in relation to 
existing knowledge (and check for consistency with existing 
knowledge) [3].  

Feature extraction can transform massive, low-level data 
into smaller, higher-level feature descriptions such as 
replacing a series of high-resolution images with the (x, y) 
tracking of a cyclone eye over time.  Feature extraction 
methods are candidates for space-based processing when the 
goal is to reduce the data volume prior to transmission or to 
task the sensor-web to autonomously collect higher resolution 
data in the path of the cyclone to improve the inputs to storm-
tracking models.  Therefore, specialized algorithms or biased 
sampling schemes may be needed to ensure capture of rare 
but important classes of data that may occur with very low 
probability and appear as noise to more general algorithms 
[3].  These algorithms can be run as data are collected, as 
data stream into the archive or as data are serendipitously 
extracted from the archive to fulfill an order. Scalable, crafted 
algorithms are necessary to operate on large databases and 
must be understandable since findings need to be interpreted 
as knowledge or explained [3].  

3) Automated programming  
Low-level languages (e.g. FORTRAN, C++, JAVA) 

impede progress because they require the problem description 
to be expressed with the problem solution and detailed control 
structures such as loops and parallelism [4][5].  Graphical 
based programming reduces program complexity but is still 
problematic.  Even with dedicated libraries and middleware, 
there are limits to the degree these kinds of methods can 
facilitate the construction of software without further aids [6].  

Researchers have developed prototype techniques that can 
automate the construction of efficient data analysis software 
from a concise problem description expressed in code [7].  
Given a problem where data sources are intermixed and 
signals to be identified, separated and modeled, such systems 
can automatically separate the data and find optimal 
algorithms, either symbolically or numerically, reproducing 
data from each source [8]. These systems also simultaneously 
generate compliant, detailed documentation and efficient, 
maintainable code implementing these solutions.  One line of 
code describing the problem translates, on average, to 30 
lines of C describing the algorithm solution [4].   

B. Production models 

The technologies that support the discovery process are 
germane to production modeling however production systems 
pose additional challenges. As successful discovery activities 
mature, they can provide products to assess impacts on the 
system of study.  Today there are serious deficiencies in the 
science community’s ability to provide the necessary products 
for climate assessment [1].  Barriers include processing 
limitations, the difficulty of integrating new scientific models, 
competing for scarce talent with the commercial sector, costly 



  

computing resources and, implementation of these software 
on ever evolving, distributed computer architectures.  
Developing technologies can help production modeling.  

1) High-end computing 
The high performance computing industry is 

fundamentally changing due to Moore’s Law and this change 
has a short-term, negative impact on production modeling in 
Earth science [1]. Parallel computers are now built with 
commodity processors and components.  While the 
benchmarks of these single image systems are impressive; 
scientists suffer from a significant usability gap and are not 
achieving needed performance [1][9].  

Automation must help implement and integrate models by 
abstracting the hardware, automatically finding parallelisms 
in code, and reducing the labor needed to write, link and 
modify efficient codes.  Experimental languages can find 
parallelisms in dynamic programs such as the quicksort 
(programs where dynamic dataaffect program execution and 
parallelism)  [5].  New languages eliminate the need to define 
detailed control structures in the problem solution and 
solutions are generated automatically in the form of 
documented, maintainable C code [4][7].  The challenge is to 
automate the scheduling of the program elements on the 
processors.  The benefit of automation is that it scales beyond 
the ability of humans to remember, recognize and apply all 
optimizations on code [5].  Intelligent compilers and concise 
languages can reduce the labor and hardware expertise for 
high-end computers just as today’s optimizing compilers 
surpassed the optimizing skills possessed by programmers in 
the early 80’s. 

2) Human Centered Computing and Collaboration 
Human collaboration is still necessary due to the 

limitations of automation and software systems.  
Collaboration technologies facilitate the formation of remote 
teams improving efficiency and human computer interaction 
[2].  The USGCRP’s multi-agency culture supports discovery-
driven research activities but is not well suited to support a 
more product-oriented activity. A host of sub-critical efforts 
resides in the various agencies, and currently there is no 
effective means to allow these disparate groups to collaborate 
and organize [1].  Software and high speed networking 
infrastructure required by a sensor-web can enable remote 
collaboration activities, given the incentives are modified to 
encourage close inter-team collaboration [2]. 

III. PIPELINES AND PROTOCOLS 

A sensor web is a type of real-time, widely distributed 
instrument system that extends the data network into space 
and enables satellites to communicate and interact.   Similar 
systems are being developed on the ground, such as those 
built in support of medical science research and collaboration.  
These environments require, easy administration, enforceable 
user conditions and access control for all sensor and data 
elements [10].  In these systems, integrated resources must 

support dynamic scheduling and the system must be designed 
to adapt to varying conditions in the distributed environment.    
Automated methods must manage data streams and 
automated control and guidance systems are necessary to 
enable remote operations and complex resource scheduling 
and reservation capabilities [10].   

Traditional network protocols move bits between locations, 
however future protocols will need to be aware of the 
application and specifically support the application in a 
distributed framework in toto.  A successful protocol interface 
must be simple, well defined and stable [10].  Currently, data 
transmission protocols (TCP) and streaming protocols such as 
streaming media are maturing to support increasing 
bandwidth and stream sizes.  There are emerging protocols, 
such as CORBA, that support real-time instrumentation and 
Java/RMI for data intensive applications.  More research is 
needed to support protocols that can maintain memberships of 
process groups in an open network where there are unknown 
and uncooperative users.  New protocols should support 
distributed parallel processing over clusters, scalable multi-
cast protocols, and protocols for intergroup data sharing.    In 
the future, flow and congestion control and latency problems 
must be resolved.  Distributed object protocols are needed for 
heterogeneous computing systems to maintain the integrity 
and linage of replicated information across archives.  These 
must extend end-to-end from the ground to space and 
airborne platforms.  Security, data consistency, and reliability 
are essential [10]. 
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