Climate Change: The defining issue of our era

• The planet is warming
 • Multiple lines of evidence
 • Credible link to human GHG (green house gas) emissions

• Consequences can be dire
 • Extreme weather events, regional climate and ecosystem shifts, abrupt climate change, stress on key resources and critical infrastructures

• There is an urgency to act
 • Adaptation: “Manage the unavoidable”
 • Mitigation: “Avoid the unmanageable”

• The societal cost of both action and inaction is large

Key outstanding science challenge:
Actionable predictive insights to credibly inform policy
Data-Driven Knowledge Discovery in Climate Science

- **From data-poor to data-rich transformation**
 - **Sensor Observations**: Remote sensors like satellites and weather radars as well as in-situ sensors and sensor networks like weather station and radiation measurements
 - **Model Simulations**: IPCC climate or earth system models as well as regional models of climate and hydrology, along with observed data based model reconstructions

- Data guided processes can complement hypothesis guided data analysis to develop predictive insights for use by climate scientists, policy makers and community at large.

"The world of science has changed ... data-intensive science [is] so different that it is worth distinguishing [it] ... as a new, fourth paradigm for scientific exploration." - Jim Gray
Data Mining Challenges

- Spatio-temporal nature of data
 - spatial and temporal autocorrelation.
 - Multi-scale/Multi-resolution nature

- Scalability
 - Size of Earth Science data sets can be very large,
 For example, for each time instance,
 ◆ 2.5°x 2.5°: 10K locations for the globe
 ◆ 250m x 250m: ~10 billion
 ◆ 50m x 50m: ~250 billion

- High-dimensionality
- Noise and missing values
- Long-range spatial dependence
- Long memory temporal processes
- Nonlinear processes, Non-Stationarity
- Fusing multiple sources of data
Illustrative Applications of Data Mining

- Monitoring of global forest cover
- Understanding the impact of climate change using data driven analysis.
Monitoring Forest Cover Change: Motivation

- Forests are a critical component of planet.
 - Act as sink of carbon from the atmosphere.
 - Provide ecological diversity and protect soil.
 - Livelihood for millions of people.

- Massive degradation in forest cover due to logging, conversions to cropland or plantations and natural disasters like fires.

- Quantifiable knowledge about changes in forest cover is critical for effective management of forest resources
 - Carbon Trading
 - UN REDD: monetary payments for preservation of forests.

Purveyors of water, consumers of carbon, treasure-houses of species, the world’s forests are ecological miracles. They must not be allowed to vanish. The Economist, Sep 23rd 2010

Illegal deforestation in Para, Brazil. Source: Greenpeace
State of the Art in Land cover change detection

- Primarily based on examining differences between two or more high quality satellite images acquired on different dates.

Limitations:

- High quality observations are infrequent in many parts of the world such as the tropics.
- Unable to detect changes outside the image acquisition window.
- Difficult to identify when the change has occurred.
- Parameters such as rate of change, extent, speed, and pattern of growth cannot be derived.
- Requires training data for each specific change of interest making it inherently unsuitable for global analysis.
Alternate approach: Analyzing Vegetation Time Series

- Daily Remote Sensing observations are available from MODIS aboard AQUA and TERRA satellites.
 - High temporal frequency (daily for multi-spectral data and bi-weekly for the Vegetation index products like EVI, FPAR)

- Time series based approaches can be used for
 - Detection of a greater variety of changes.
 - Identifying when the change occurred
 - Characterization of the type of change eg. abrupt vs gradual
 - Near-real time change identification

- Challenges
 - Poor data quality and high variability
 - Coarse spatial resolution of observations (250 m)
 - Massive data sets: 10 billion locations for the globe

EVI shows density of plant growth on the globe.

EVI time series for a location
Previous work: Time Series Change Detection

Time series change detection problem has been addressed in a variety of fields under different names:

- Statistics
- Signal processing
- Control theory
- Industrial process control
- Computer graphics & vision (curve segmentation)
- Network Intrusion Detection
- Fraud Detection (telecommunications, etc.)
- Health Care (Statistical Surveillance)
- Industrial Processes (process control and quality control)
- Land Cover Change

- Parameter Change
 CUSUM-type approaches, Page [1957], Chernoff and Zacks [1964], Picard[1985]

- Segmentation
 Linear Model: Himberg et al. [2001], Keogh et al. [2001], Hawkins and Merriam [1973]
 Polynomial Model: Guralnik and Srivastava [1999]
 Wavelet Model: Sharifzadeh et al. [2005]

- Predictive
 Ge and Smyth [2000], Roy, Jin, Lewis and Justice [2005]

- Subspace Approach
 Moskvina and Zhigljavsky [2003]

- Anomaly Detection
 Chan and Mahoney [2005], Yamanishi and Takeuchi [2002], Ide and Kashima [2004], Chandola, Banerjee and Kumar [2008]
Novel Time Series Change Detection Techniques

Existing Time series change detection algorithms do not address unique characteristics of eco-system data like noise, missing values, outliers, high degree of variability (across regions, vegetation types, and time).

Segmentation based approaches
- Divide time series into homogenous segments.
- Boundary of segments become the change points.
- Useful for detection land cover conversions like forest to cropland, etc.

Prediction based approaches
- Build a prediction model for the location using previous observations.
- Use the deviation of subsequent observations from the predicted value by the model to identify changes/disturbances.
- Useful for detecting deviations from the normal vegetation model.

• S. Boriah, V. Kumar, M. Steinbach, et al., *Land cover change detection: a case study*, KDD 2008.
Monitoring of Global Forest Cover

- Automated Land change Evaluation, Reporting and Tracking System (ALERT)
 - Planetary Information System for assessment of ecosystem disturbances:
 - Forest fires, droughts, floods, logging/deforestation, conversion to agriculture

- This system will help
 - quantify the carbon impact of these changes
 - Understand the relationship to global climate variability and human activity

- Provide ubiquitous web-based access to changes occurring across the globe, creating public awareness
Case Study 1:
Monitoring Global Forest Cover
Fires in Northern Latitude (Canada/Russia) 2001-2009
Forest Fires in Canada

Massive Fires in Canada have converted the forests into source of carbon in the atmosphere.
Logging in Canada

- Logging has produced clear cut areas in British Columbia, which can be identified as regular, generally rectangular shapes.

- The highly reflective clear cut areas stand out in marked contrast to the dark green forested areas.

(Source: NASA)
Deforestation in the Amazon Rainforest

Brazil Accounts for almost 50% of all humid tropical forest clearing, nearly 4 times that of the next highest country, which accounts for 12.8% of the total.
Amazon Deforestation Animation 2001-2009
Deforestation in the Amazon Rainforest: Comparison with PRODES

The blue polygons are deforestation changes marked by PRODES. Yellow dots are events detected by our algorithm.

PRODES is a system for monitoring deforestation in Brazilian Amazon.
Deforestation in the Amazon Rainforest: Comparison with PRODES

PRODES is a system for monitoring deforestation in Brazilian Amazon.

The blue polygons are deforestation changes marked by PRODES. Yellow dots are events detected by our algorithm.
Gold Mine in Protected Forest, Tanzania
Reforestation near Guangting Reservoir, China

• These reforestation events are around Guangting Reservoir, a reservoir around 100 miles away from Beijing.

• Around 20 years ago, Guanting Reservoir used to play an important role of serving water for people in Beijing and Zhangjiakou.

• The environment around the reservoir got polluted after years, due to lack of protection.

• It is located very close to Beijing and plays an important role, therefore the government began to give a comprehensive treatment for this area.

• Part of the treatment is planting trees around Guangting Reservoir which started in 2003 and is still going on.

News Articles:
Detecting other land cover changes

- Shrinking of Lake Chad, Nigeria
- Damage to vegetation by hurricane Katrina
- Flooding along Ob River, Russia
- Farm abandonment in Zimbabwe during political conflict between 2004 and 2008.
Impact on REDD+

“The [Peru] government needs to spend more than $100m a year on high-resolution satellite pictures of its billions of trees. But … a computing facility developed by the Planetary Skin Institute (PSI) … might help cut that budget.”

“ALERTS, which was launched at Cancún, uses … data-mining algorithms developed at the University of Minnesota and a lot of computing power … to spot places where land use has changed.”

- The Economist 12/16/2010
Monitoring Forest Cover Change: Challenges Ahead

- Designing robust change detection algorithms
- Characterization of land cover changes
- Multi-resolution analysis (250m vs 1km vs 4km)
 - Different kinds of changes are visible at different scales
- Multivariate analysis
 - Detecting some types of changes (e.g. crop rotations) will require additional variables.
- Data quality improvement
 - Preprocessing of data using spatio-temporal noise removal and smoothing techniques can increase performance of change detection.
- Incremental update and Real-time detection
- Spatial event identification
- Applications in variety of domains:
 - Climate, agriculture, energy
 - Economics, health care, network traffic

Source: Merck, Google.
Understanding Climate Change - Physics based Approach

General Circulation Models: Mathematical models with physical equations based on fluid dynamics.

Parameterization and non-linearity of differential equations are sources for uncertainty!

Temperature increases are human-induced
The anthropogenic climate change “fingerprint”

Globally averaged surface air temperature

Anomalies from 1880-1919 (K)

<table>
<thead>
<tr>
<th>Observations</th>
<th>Natural forcings</th>
<th>All forcings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulations carried out using NCAR, ORNL, and NERSC computing platform.

Projection of temperature increase under different **Special Report on Emissions Scenarios** (SRES) by 24 different GCM configurations from 16 research centers used in the **Intergovernmental Panel on Climate Change** (IPCC) 4th Assessment Report.

A1B: “integrated world” balance of fuels
A2: “divided world” local fuels
B1: “integrated world” environmentally conscious

IPCC (2007)
Understanding Climate Change - Physics based Approach

General Circulation Models: Mathematical models with physical equations based on fluid dynamics

Parameterization and non-linearity of differential equations are sources for uncertainty!

Physics-based models are essential but not adequate

- Relatively reliable predictions at global scale for ancillary variables such as temperature
- Least reliable predictions for variables that are crucial for impact assessment such as regional precipitation

“The sad truth of climate science is that the most crucial information is the least reliable” (Nature, 2010)
Project aim:
A new and transformative data-driven approach that complements physics-based models and improves prediction of the potential impacts of climate change

Transformative Computer Science Research

Predictive Modeling
Enable predictive modeling of typical and extreme behavior from multivariate spatio-temporal data

Complex Networks
Enable studying of collective behavior of interacting eco-climate systems

Relationship Mining
Enable discovery of complex dependence structures: non-linear associations or long range spatial dependencies

High Performance Computing
Enable efficient large-scale spatio-temporal analytics on exascale HPC platforms with complex memory hierarchies

Science Contributions
- Data-guided uncertainty reduction by blending physics models and data analytics
- A new understanding of the complex nature of the Earth system and mechanisms contributing to adverse consequences of climate change

Success Metric
- Inclusion of data-driven analysis as a standard part of climate projections and impact assessment (e.g., for IPCC)

“... data-intensive science [is] …a new, fourth paradigm for scientific exploration.” - Jim Gray
Some Driving Use Cases

Impact of Global Warming on Hurricane Frequency

- Find non-linear relationships
- Validate w/ hindcasts
- Build hurricane models

Regime Shift in Sahel

- Onset of major 30-year drought over the Sahel region in 1969
- Regime shift can occur without any advanced warning and may be triggered by isolated events such as storms, drought

1930s Dust Bowl

- Affected almost two-thirds of the U.S. Centered over the agriculturally productive Great Plains
- Drought initiated by anomalous tropical SSTs (Teleconnections)

Discovering Climate Teleconnections

El Nino Events

Nino 1+2 Index

© Vipin Kumar ESTF’ 2011 28
Understanding climate variability using Dipole Analysis

Dipoles represent a class of teleconnections characterized by anomalies of opposite polarity at two locations at the same time.

![Southern Oscillation Chart](chart.png)
Understanding climate variability using Dipole Analysis

Dipoles represent a class of teleconnections characterized by anomalies of opposite polarity at two locations at the same time.
Understanding climate variability using Dipole Analysis

Dipoles represent a class of teleconnections characterized by anomalies of opposite polarity at two locations at the same time.

Southern Oscillation: Tahiti and Darwin

North Atlantic Oscillation: Iceland and Azores
Importance of dipoles

Crucial for understanding the climate system, especially for weather and climate forecast simulations within the context of global climate change.

NAO influences sea level pressure (SLP) over most of the Northern Hemisphere. Strong positive NAO phase (strong Islandic Low and strong Azores High) are associated with above-average temperatures in the eastern US.

SOI dominates tropical climate with floodings over East Asia and Australia, and droughts over America. Also has influence on global climate.

Correlation of Land temperature anomalies with NAO

Correlation of Land temperature anomalies with SOI
List of Well Known Climate Indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI</td>
<td>Southern Oscillation Index: Measures the SLP anomalies between Darwin and Tahiti</td>
</tr>
<tr>
<td>NAO</td>
<td>North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores and Stykkisholmur, Iceland</td>
</tr>
<tr>
<td>AO</td>
<td>Arctic Oscillation: Defined as the first principal component of SLP northward of 20° N</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation: Derived as the leading principal component of monthly SST anomalies in the North Pacific Ocean, poleward of 20° N</td>
</tr>
<tr>
<td>WP</td>
<td>Western Pacific: Represents a low-frequency temporal function of the ‘zonal dipole’ SLP spatial pattern involving the Kamchatka Peninsula, southeastern Asia and far western tropical and subtropical North Pacific</td>
</tr>
<tr>
<td>PNA</td>
<td>Pacific North American: SLP Anomalies over the North Pacific Ocean and the North America</td>
</tr>
<tr>
<td>AAO</td>
<td>Antarctic Oscillation: Defined as the first principal component of SLP southward of 20° S</td>
</tr>
<tr>
<td>NINO1+2</td>
<td>Sea surface temperature anomalies in the region bounded by 80° W-90° W and 0° -10° S</td>
</tr>
<tr>
<td>NINO3</td>
<td>Sea surface temperature anomalies in the region bounded by 90° W-150° W and 5° S-5° N</td>
</tr>
<tr>
<td>NINO3.4</td>
<td>Sea surface temperature anomalies in the region bounded by 120° W-170° W and 5° S-5° N</td>
</tr>
<tr>
<td>NINO4</td>
<td>Sea surface temperature anomalies in the region bounded by 150° W-160° W and 5° S-5° N</td>
</tr>
</tbody>
</table>

Discovered primarily by human observation and EOF Analysis

AO: EOF Analysis of 20N-90N Latitude

AAO: EOF Analysis of 20S-90S Latitude
Motivation for Automatic Discovery of Dipoles

- The known dipoles are defined by static locations but the underlying phenomenon is dynamic.

- Manual discovery can miss many dipoles.

- EOF and other types of eigenvector analysis finds the strongest signals and the physical interpretation of those can be difficult.

Dynamic behavior of the high and low pressure fields corresponding to NOA climate index (Portis et al, 2001)

AO: EOF Analysis of 20N-90N Latitude

AAO: EOF Analysis of 20S-90S Latitude
Discovering Climate Teleconnections using Network Representation

Climate Network

Nodes in the Graph correspond to grid points on the globe.

Edge weight corresponds to correlation between the two anomaly timeseries

Shared Reciprocal Nearest Neighbors (SRNN) Density

Dipoles from SRNN density
Benefits of Automatic Dipole Discovery

- Detection of Global Dipole Structure
 - Most known dipoles discovered
 - New dipoles may represent previously unknown phenomenon.
 - Enables analysis of relationships between different dipoles

- Location based definition possible for some known indices that are defined using EOF analysis.

- Dynamic versions are often better than static

- Dipole structure provides an alternate method to analyze GCM performance
Detection of Global Dipole Structure

- Most known dipoles discovered
- Location based definition possible for some known indices that are defined using EOF analysis.
- New dipoles may represent previously unknown phenomenon.
Detection of Global Dipole Structure

- Most known dipoles discovered
- Location based definition possible for some known indices that are defined using EOF analysis.
- New dipoles may represent previously unknown phenomenon.
Detection of Global Dipole Structure

- Most known dipoles discovered
- Location based definition possible for some known indices that are defined using EOF analysis.
- New dipoles may represent previously unknown phenomenon.
The dynamic index generates a stronger impact on land temperature anomalies as compared to the static index.

Figure to the right shows the aggregate area weighted correlation for networks computed for different 20 year periods during 1948-2008.
The dynamic index generates a stronger impact on land temperature anomalies as compared to the static index.

Figure to the right shows the aggregate area weighted correlation for networks computed for different 20 year periods during 1948-2008.
A New Dipole Around Antarctica?

- 3 major dipole structures can be seen.
- The AAO and two others shown in figure
- A newer phenomenon which is not captured by the EOF analysis?
Comparison of Climate Models using Dipole Structure

Differences in dipole structure can offer valuable insights to climate scientists on model performance.

Strength of the dipoles varies in different climate models.

SOI is only simulated by GFDL 2.1 and not by BCM 2.0.
Comparison of Climate Models using Dipole Structure

- Dipole connections in forecast data provide insights about dipole activity in future.

- For e.g. both forecasts for 2080-2100 show continuing dipole activity in the extratropics but decreased activity in the tropics. SOI activity is reduced in GFDL2.1 and activity over Africa is reduced in BCM 2.0. This is consistent with archaeological data from 3 mil. years ago, when climate was 2-3°C warmer (Shukla, et. al).
Relating Dipole Structure to Model Prediction

- The dipole structure of the top 2 models are different from the bottom two models
 - NCAR-CCSM and NASA-GISS miss SOI and other dipoles near the Equator
Summary

- Data driven discovery methods hold great promise for advancement in the mining of climate and ecosystem data.
- Scale and nature of the data offer numerous challenges and opportunities for research in mining large datasets.

"The world of science has changed ... data-intensive science [is] so different that it is worth distinguishing [it] ... as a new, fourth paradigm for scientific exploration." - Jim Gray
Team Members and Collaborators

Michael Steinbach, Shyam Boriah, Rohit Gupta, Gang Fang, Gowtham Atluri, Varun Mithal, Ashish Garg, Vanja Paunic, Sanjoy Dey, Jaya Kawale, Marc Dunham, Divya Alla, Ivan Brugere, Vikrant Krishna, Yashu Chamber, Xi Chen, James Faghmous, Arjun Kumar, Stefan Liess

Sudipto Banerjee, Chris Potter, Fred Semazzi, Nagiza Samatova, Steve Klooster, Auroop Ganguly, Pang-Ning Tan, Joe Knight, Arindam Banerjee, Peter Snyder

Project website
Climate and Eco-system: www.cs.umn.edu/~kumar/nasa-umn