

Mineral and Gas Identification Using a High-Performance Thermal Infrared Imaging Spectrometer

Dr. Jeffrey L. Hall Space Science Applications Laboratory Physical Sciences Laboratories The Aerospace Corporation

NASA ESTF Conference 22 June 2011

© The Aerospace Corporation 2011

Outline

- Motivation
- Trade studies
- MAGI sensor concept
- Project status

Project Background

- Scope of the MAGI IIP includes an airborne sensor demonstration and a space-based sensor concept design
- MAGI (Mineral And Gas Identifier) is the airborne demonstrator sensor designed to support a satellite sensor concept
 - Operates in the thermal IR (7-12 micron) spectral region
- MAGI is a precursor to "MAGI-L" (MAGI-LEO)
 - Analyses performed on MAGI will be extrapolated into the MAGI-L concept as part of the IIP, including an assessment of space-qualified elements
- MAGI builds upon the ASTER concept to provide improved measurements and incorporate state-of-the art technology for future Earth-observing instruments

Relevance to Decadal Study

- Multi-spectral satellite thermal IR sensors have been used in the following areas:
 - Volcano monitoring
 - Impending eruptions
 - Gaseous and particulate effluents
 - Rock and soil identification
 - Surface temperature monitoring (drought and evapotranspiration studies, urban heat islands)
- MAGI-L will also be used to detect gas emission from large sources
 - Volcano monitoring (sulfur dioxide)
 - Pollution monitoring (ammonia from biomass burning and livestock operations, sulfur dioxide from power plants)
 - Ozone depletion (methyl chloride from biomass burning)

Additional Benefits of MAGI-L over ASTER

- More accurate pixel temperature and emissivity retrieval
 - Use in-scene atmospheric compensation methods
 - Detect "contaminating" thin cirrus at night, when SWIR cannot
- Improved discrimination between minerals
 - Due to more spectral channels
- Improved discrimination of volcanic emissions
 - Sulfur dioxide, and ash and sulfate particulates
- Detect smaller thermal anomalies
 - Due to smaller pixel size
- Shorter revisit time
 - Due to larger swath width

Key MAGI Components

- Dyson spectrometer
 - Small optical distortion at low f-numbers
- High frame rate HgCdTe focal plane array
 - Any suitable detector material could be substituted as it becomes available
- Field-splitting mirror assembly
 - Doubles the swath width (\rightarrow decreases revisit time)
 - Provides redundancy
- Cryocooler for FPA and spectrometer housing
 - Space qualified/available technology

Mineral Mapping - Cuprite, NV

Dominant Endmember Distributions

32 Bands

> At 16 or fewer bands, the mineral mapping changes significantly

ASTER

Gas, Mineral and ISAC Studies Combined

> All the studies show an appreciable performance penalty in changing from 32 to 16 channels (0.19 to 0.38 μ m sampling)

Trade Study Summary

Study	Short Wavelength Cut-off	Long Wavelength Cut-off	Bandwidth (microns)	NEDT (°C)	GSD (m)
Gas Detection	7.2	12.0 ¹	≤ 0.19	0.1	45
Mineral Detection	7.8	12.0 ¹	≤ 0.19		
Atmos. Comp.	7.5	12.0 ¹	≤ 0.25		
Cirrus Detection	7.0			_	
Summary	7.0	12.0	0.19	0.1	45

¹ To minimize detector noise and maximize operability, keep this as low as possible. Analysis showed that in all cases, a 12-micron cut-off does not appreciably affect performance.

A mean bandwidth of 0.19 from 7 to 12 microns results in 28 spectral channels

MAGI-L Specifications – Comparison to ASTER

	ASTER	MAGI-L
No. Bands	5	28
GSD (m)	90	60
Swath Width (km)	60	200
NEDT (°C)	0.2	0.1

• MAGI-L will use a 240 mm (9.5") diameter telescope (similar to ASTER)

MAGI-L Wavelength Bands Comparison to ASTER, MODIS and proposed HyspIRI

- MAGI-L does not have preconceived notion of "best" wavelengths
- It will provide a unique test-bed to make that determination
- It does cover wavelengths of previous sensors to provide data continuity

Satellite End-to-End Sensor Concept

MAGI Airborne Sensor

- Build in July
- Flights in August

Cryostat Assembly

Optics Bench

Structural parts are aluminum and fiberglass construction

Dyson Spectrometer

Manufactured by Corning Specialty Materials

- Predicted performance
 - Grating: 97% max. efficiency in 1st order (9.0 μm), 72% min. (7.0 μm)
 - Distortions: smile 0.025 pixels, keystone 0.035 pixels

Cryocooler Testing – Sunpower Stirling CT Model

- Measured heat lift curve in MAGI test environment was lower than expected
- Performance insufficient for predicted detector cooling requirement

> CT cooler will work for optics bench, not for detector. Use GT instead.

Status of Project

- Received all optics and cryocooler parts
- Waiting on remainder of mechanical parts
- Cryocooler testing and thermal control software complete
- Software mostly complete
- Lab integration to begin in July
- Aircraft integration planned for August
- Flights planned over regions visited by The Aerospace Corporation's Mako sensor (same GSD, higher spectral resolution)
 - Salton Sea
 - California Central Valley

Acknowledgements

- Science Team
 - Stephen Young
 - Kerry Buckland
 - David Tratt
 - Michael Ramsey (Univ. of Pittsburgh)
- Engineering Team Leads
 - David Gutierrez (Systems Engineer)
 - David Warren (Optics)
 - Nery Moreno (Electronics)
 - Mazaher Sivjee (Mechanical)
 - Sonny Yi (Thermal)
- Project Manager
 - Don Pedrino

This work was supported by NASA's 2007 Instrument Incubator Program

(All trademarks, service marks, and trade names are the properties of their respective owners)

