Systems and Services For Near-Real-Time Web Access to NPP data

John Evans
Eduardo Valente
Samir Chettri

Global Science & Technology, Inc. (GST)
Greenbelt, MD
Case study: Overview of near real-time workflow
Phase I: Data streams

- *Gearing up*: Aqua MODIS Direct Broadcast
 - Using data and software from NASA's Direct Readout Laboratory (DRL)
 - http://directreadout.sci.gsfc.nasa.gov
 - *In particular*: International Polar Orbiter Processing Package (IPOPP)

- *Target*: NPP (precursor to JPSS) Direct Broadcast
 - NPP scheduled for Fall 2011 launch
 - NASA/NOAA ground system (SafetyNet TM) still in progress
 - This makes Direct Broadcast a vital alternative
Phase I: Use Case

- Working with NASA's Short-term Prediction Research and Transition program

 http://weather.msfc.nasa.gov/sport
Phase I

- Investigated information and processing technologies to provide near-real-time Web-based access to NPP/JPSS satellite data.

- Focus on computational h/w and s/w for serving Direct Broadcast data (and other near-real-time products) to modelers, forecasters and decision makers.

- For time sensitive applications, Direct Broadcast/Direct Readout will be the only way for access to NPP or JPSS-1 data (until JPSS SafetyNet™ is completed.)
Phase I: Experiments with cloud computing

• In-house proof-of-concept quickly showed that
 • We would need a lot more bandwidth
 • We *might* need a full-blown data center for peak loads
 • Ensuring real-time throughput cost-effectively is hard

• We found that cloud computing provided:
 • Increased bandwidth and computing capacity
 • Configuration flexibility
 • Easy transition (Infrastructure as a Service (IaaS): Amazon EC2, NASA Nebula)
Phase I: Questions raised

• Could we sustain near-real-time processing of NPP data?

• Would it be worth ($$) doing this in the cloud?

We obtained partial answers to these questions within Phase I and investigated them further after Phase I as an internal R&D project.
Post-Phase I – Pre-Phase II findings: Bandwidth

Time (in seconds) for transferring largest (840MB) input images from receiver (DRL)
Post-Phase I – Pre-Phase II findings: Processing latency

Processing latency (in minutes) for last product derived from largest (840MB) input images

<table>
<thead>
<tr>
<th>Cloud Service</th>
<th>Processing Latency (in minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-house server</td>
<td>38</td>
</tr>
<tr>
<td>EC2 m1.large</td>
<td>34</td>
</tr>
<tr>
<td>EC2 m1.xlarge</td>
<td>21</td>
</tr>
<tr>
<td>EC2 c1.xlarge</td>
<td>23</td>
</tr>
<tr>
<td>EC2 m2.xlarge</td>
<td>16</td>
</tr>
<tr>
<td>EC2 m2.2xlarge</td>
<td>12</td>
</tr>
<tr>
<td>EC2 m2.4xlarge</td>
<td>12</td>
</tr>
<tr>
<td>Nebula m1.large</td>
<td>16</td>
</tr>
<tr>
<td>Nebula m1.xlarge</td>
<td>11</td>
</tr>
</tbody>
</table>
Post-Phase I – Pre-Phase II findings:
Costs
One morning's Direct Broadcast from NASA's Aqua satellite to a receiving station in Greenbelt, MD.
Post-Phase I – Pre-Phase II findings: Costs

- 2-3 overpasses, twice a day
- Scale down between overpasses
- Scale up just in time for next overpass
Phase II Technical Objectives

• Engineer Phase I working proof-of-concept into a robust, adaptable, secure set of components.
• Equip Web services with industry standard interfaces that permit access by a variety of end-user tools.
• Generalize from Aqua/Terra + NPP to other data streams
• Streamline performance to ensure real-time throughput to many users
• Outreach to users and developers in target markets (weather forecasting and others)
Objectives: 1

Engineer Phase I working proof-of-concept into a robust, adaptable and secure set of components.

Moved from an investigation of the use of the cloud to making cloud computing a key element in our investigations.

Adaptable:
 • Data input - easily add new data streams.
 • Data output – easily accommodate new users and applications.
Objectives: 2

Equip Web services with industry standard interfaces that permit access by a variety of end-user tools.

- OGC Web Services suite (WMS) + KML
- OGC Web Feature Service (*points, lines, polygons*)
- OGC Web Coverage Service for *grid data and imagery*
- OPeNDAP for *scientific data*
- OGC Sensor Observation Service (SOS) for *in situ* or orbital sensor data

First use case scenario: Provide data in a form amenable to AWIPS II for WFO at MSFC
Objectives 3

Generalize from Aqua/Terra + NPP to other data streams

• GOES
• *In situ* weather stations (National Mesonet)
• AERONET
• NEXRAD
• Simulation outputs
• Others such as LIDAR, GOES-R
Objectives 4

Streamline performance to ensure real-time throughput to many users

Scale components up and down as needed
Objectives: 5

Outreach to users and developers in target markets (weather forecasting and others)

• Gather alpha and beta users of our Phase 2 s/w and conduct a survey (ease of use, appropriateness)

• Investigate opportunities to partner with SPoRT.
Commercialization opportunities

- **Software as a Service:**
 - Build and host Web-based applications for specific user communities

- **Platform as a Service:**
 - Host data services, relying on real-time data providers

- **Infrastructure as a Service:**
 - Maintain / distribute machine image(s) for hosting real-time data services
“Elevator speech”

• The project has immediate relevance because of the delay in the deployment of SafetyNet.
• Collaboration with SPoRT links us directly to a customer for our products.
• Cloud Computing puts all of these opportunities within reach of a small business
Thank you.

Any questions?
Instance types tested

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>CPU type</th>
<th>PassMark Score</th>
<th>CPU cores</th>
<th>RAM (GB)</th>
<th>Cost ($/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-house server</td>
<td>Xeon X3220</td>
<td>3,114</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Amazon EC2 m1.large</td>
<td>Xeon E5430</td>
<td>4,158</td>
<td>2</td>
<td>7.5</td>
<td>$0.34</td>
</tr>
<tr>
<td>Amazon EC2 m1.xlarge</td>
<td>Xeon E5506</td>
<td>3,374</td>
<td>4</td>
<td>15</td>
<td>$0.68</td>
</tr>
<tr>
<td>Amazon EC2 c1.xlarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazon EC2 m2.xlarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Nebula m1.large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Nebula m1.xlarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazon EC2 m2.2xlarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazon EC2.4xlarge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xeon X5550</td>
<td></td>
<td>5,232</td>
<td>2</td>
<td>17.1</td>
<td>$0.50</td>
</tr>
<tr>
<td>Xeon X5550</td>
<td></td>
<td></td>
<td>4</td>
<td>34.2</td>
<td>$1.00</td>
</tr>
<tr>
<td>Xeon X5550</td>
<td></td>
<td></td>
<td>8</td>
<td>68.4</td>
<td>$2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

(For detailed cloud-computing benchmarks see http://cloudharmony.com)
EC2 m2.2xlarge performance

IPOPP processing times: EC2 m2.2xlarge

Frequency Distribution

(steady state) (backlog)

Minutes after sensor data available

Number of products

Copyright (c) 2011 Global Science & Technology, Inc. All rights reserved.
Simultaneous execution: a single run
Cloud computing costs *(Amazon EC2)*

- **CPU usage** *(see table)*
 - Pennies per hour add up!
 - Note 100:1 cost ratio

- **Data Storage**
 - EBS: $100/TB/month
 - S3: $37-140/TB/month

- **Data Transfer**
 - In: $100/TB
 - Out: $80-150/TB

- **Other**
 - SQL queries; I/O requests
 - Snapshot GETs/PUTs

<table>
<thead>
<tr>
<th>Instance type</th>
<th>cost/hr</th>
<th>/day</th>
<th>/mo</th>
<th>/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1.micro</td>
<td>$0.02</td>
<td>$0.48</td>
<td>$15</td>
<td>$175</td>
</tr>
<tr>
<td>m1.small</td>
<td>$0.085</td>
<td>$2</td>
<td>$62</td>
<td>$745</td>
</tr>
<tr>
<td>m1.large</td>
<td>$0.34</td>
<td>$8</td>
<td>$248</td>
<td>$2,978</td>
</tr>
<tr>
<td>m1.xlarge</td>
<td>$0.68</td>
<td>$16</td>
<td>$496</td>
<td>$5,957</td>
</tr>
<tr>
<td>c1.xlarge</td>
<td>$0.68</td>
<td>$16</td>
<td>$496</td>
<td>$5,957</td>
</tr>
<tr>
<td>m2.xlarge</td>
<td>$0.50</td>
<td>$12</td>
<td>$365</td>
<td>$4,380</td>
</tr>
<tr>
<td>m2.2xlarge</td>
<td>$1.00</td>
<td>$24</td>
<td>$730</td>
<td>$8,760</td>
</tr>
<tr>
<td>m2.4xlarge</td>
<td>$2.00</td>
<td>$48</td>
<td>$1,460</td>
<td>$17,520</td>
</tr>
<tr>
<td>cc1.4xlarge</td>
<td>$1.60</td>
<td>$38</td>
<td>$1,169</td>
<td>$14,026</td>
</tr>
<tr>
<td>cg1.4xlarge</td>
<td>$2.10</td>
<td>$50</td>
<td>$1,534</td>
<td>$18,409</td>
</tr>
</tbody>
</table>
Ways to reduce cloud costs

- **Reserved instances:** fixed sum + lower hourly rate
 - Worthwhile if usage exceeds 11 hrs/day (1 year)
 ... 8.5 hrs/day (2 years) ... 5.5 hrs/day (3 years)

- **Spot instances**
 - Spot price: as little as 1/3 of regular hourly rate
 - Pick a rate ($/hr) ceiling; run until spot price exceeds ceiling
 - Useful when load-balancing across many identical machines

- **Scale up & down as needed**
 - A polar-orbiting satellite may let us save 60% or more by scaling up & down several times a day
Case study summary

- **Proof of concept**
 - Infrastructure as a Service made for a quick & easy transition

- **Task effectiveness**
 - Tried many different instance types @ low cost, no risk
 - Reduced latency from ~40 minutes to ~12
 - Significant add'l performance is clearly within reach
 - Gained significant bandwidth

- **Cost effectiveness**
 - Cloud computing costs are complex and significant

 (But so are data center costs)
 - Elastic provisioning and utility pricing worked well for us
 - Scaling up & down 2x/day will shrink our costs by 60+%
Other use cases and data streams

- Many fields could benefit from easier near-real-time access to weather & environmental data – *e.g.*,
 - Transportation … Emergency management … Agriculture … Law Enforcement …
- We're aiming to build an infrastructure suitable for many data streams – *e.g.*,
 - GOES (geostationary imagery) … Radar … Simulations … Sensor networks …
- Upstream and downstream interoperability will result from industry-standard interfaces – *e.g.*,
 - OGC Web Services … OPeNDAP …
In summary

- **Proof of concept**
 - Infrastructure as a Service made for a quick & easy transition

- **Task effectiveness**
 - Reduced latency from ~40 minutes to ~12
 - Significant add'l performance is clearly within reach
 - Gained significant bandwidth

- **Cost effectiveness**
 - Cloud computing costs are complex and significant

 (But so are data center costs)
 - By scaling up & down frequently, we hope to reduce costs 60%

 (This would not be practical without cloud computing)

- **Commercial potential; many people can play**
Figure 2. IPOPP-produced data conversion for AWIPS input
Objectives 4 (Cont’d)

Streamline performance to ensure real-time throughput to many users

- Optimize IPOPP algorithm scheduling
- Use lots of fast CPU cores to handle backlogs
- Distribute services & algorithms across multiple machines
- Parallelize algorithms
- Compile algorithms to run on GPUs
- Streamed data / streamed processing