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nadir-viewing co-located 18-37 GHz microwave radiometer 
[1]. However, the Jason-class radiometers have reduced 
accuracy within ~40 km of the coasts. Furthermore, they 
cannot provide wet path delay correction over land and 
therefore are used only for ocean sea level measurements. 
Due to the finer spatial resolution of high frequency 
radiometer channels, the SWOT radiometer would allow for 
wet-tropospheric path delay correction near coastal zones and 
over land, providing the ability to characterize ocean 
mesoscale and submesoscale processes (on a 10-km scale and 
larger) in the global oceans, for the first time, and to measure 
the global water storage in inland surface water bodies, 
including rivers, lakes, reservoirs, and wetlands [2].   
 The microwave switches were fabricated using Northrop 
Grumman Space Technology’s (NGST) 75-μm thick InP 
MMIC PIN process. The use of 75-μm thick InP technology 
minimizes RF parasitics, enabling high performance 
microwave designs. PIN diodes are ideal for radiometer 
switch applications due to their low loss and fast switching 
speeds. Several variations of each SPDT design were 
fabricated using PIN diode sizes ranging from 3-8um to 
determine which size(s) performed most optimally. The small 
size of the PIN diodes and precise lithography of the InP 
substrate process lead to stable and repeatable RF 
performance, which is key in radiometer applications.  
 Two different versions of the 80-105 GHz switches were 
developed: a symmetrical version and an asymmetrical 
version, both of which will be discussed in more detail. Both 
versions have achieved <2 dB insertion loss, >15 dB return 
loss (>18 dB for the asymmetric design), and >15 dB 
isolation. However, post-fabrication on-chip tuning of the 
asymmetric design improved the isolation to >18 dB across 
the entire frequency range and to >20dB from 85-103 GHz, 
easily meeting the isolation requirement at 92 GHz. This 
tuning can also be used on the symmetric design to improve 
the isolation.  
 The 90-135 GHz SPDT switch has achieved <2dB 
insertion loss, >15 dB return loss, and 8-12 dB isolation. 
However, it has been shown that the isolation of this switch 
design can most likely be significantly improved via the 
tuning method used in the 80-105 GHz design. 
 The 160-185 GHz has been fabricated, but not yet 
measured. Simulation results predict this switch will have <2 
dB insertion loss, >20 dB return loss, and >20 dB isolation. 

II. DESIGN TOPOLOGY 

All of the SPDT switches used PIN diodes as the switching 
elements. The advantage of using PIN diodes is that their IV 
characteristics make them ideal for RF switching. This is 
because when they are reverse-biased, a high impedance is 
obtained due to the relatively small junction capacitance of the 
diode, while when they are forward biased, the junction 
resistance decreases significantly thus providing a low 
impedance path. This can be exploited in two different ways: 
either two shunt diodes can be used (Figure 2) so that when  

 
 
Figure 2: Shunt PIN SPDT Switch 

 
Figure 3: Series PIN SPDT Switch 

 
one is forward biased it provides an RF short to ground (OFF 
state) while the other one is reverse biased and does not affect 
the RF signal (ON state) or two series diodes are used (Figure 
3) so that when one is forward biased it provides a low 
impedance RF path (ON state) while the other diode is 
reverse biased, providing a high impedance RF path (OFF 
state).  

In addition, the two topologies can be combined to obtain 
the topology in Figure 4. This was the topology used for the 
switches described in this paper. However, the 160-185 GHz 
switch used two shunt diodes on each side to add a second axis 
of symmetry. 

The SPDT switches were implemented as shown in the 
circuit schematic in Figure 5. The RF terminals are shown in 
blue. Essentially, an RF signal can be viewed as starting from 
the common leg port and traveling toward either the antenna 
leg or the reference termination, depending on the state of the 
switch. This defines the RF path. DC bias is applied at the bias 
points and travels through the quarter-wave lines, through the 
PIN diodes, and out the DC resistor in the common leg bias 
circuit. These quarter-wave lines prevent the RF signal from 
propagating toward the DC bias points and define the DC bias 
lines. Each bias line has bypass capacitors to provide further 
RF isolation. On the RF path, there are DC blocking capacitors 
that prevent DC current from exiting the Dicke switch and 
saturating subsequent components.  

 
Figure 4: Series-Shunt PIN SPDT Switch 
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Figure 5: SPDT C
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