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 
 

Abstract—Computing and algorithmic advancements are 
making possible a more complete accounting of errors and 
uncertainties in earth science modeling. Knowledge of 
uncertainty can be critical in many application areas and can 
help to guide scientific research efforts. Here, we describe a plan 
and progress to date for a fuller accounting of hydrologic 
modeling uncertainties that addresses the challenges posed by 
decadal survey missions. These challenges include the need to 
account for a wide range of error sources (e.g., model error, 
stochastically varying inputs, observational error, downscaling) 
and uncertainties (model parameters, error parameters, model 
selection). In addition, there is a need to incorporate into an 
assessment all available data, which for decadal survey missions 
includes the wealth of data from ground, air and satellite 
observing systems. Our core tool is NASA’s Land Information 
System (LIS), a high-resolution, high-performance, land surface 
modeling and data assimilation system that supports a wide 
range of land surface research and applications. Support for 
parameter and uncertainty estimation was recently incorporated 
into the software architecture, and to date three optimization 
algorithms (Levenberg-Marquardt, Genetic Algorithm, and 
SCE-UA) and two Markov chain Monte Carlo algorithms for 
Bayesian analysis (random walk, Differential Evolution-Monte 
Carlo) have been added. Results and discussion center on a case 
study that was the focus of Santanello et al. (2007) who 
demonstrated the use of remotely sensed soil moisture for 
hydrologic parameter estimation in the Walnut Gulch 
Experimental Watershed. We contrast results from uncertainty 
estimation to those from parameter estimation alone. We 
demonstrate considerable but not complete uncertainty 
reduction. From this analysis, we identify remaining challenges to 
a more complete accounting of uncertainties. 
 

Index Terms—parameter estimation, Bayesian analysis, 
optimization, value of information 
 

I. INTRODUCTION 

Recently, novel statistical algorithms have been developed 
that enable a more complete accounting of modeling 
uncertainties.  The Bayesian algorithms combine the strengths 
of conventional state and parameter estimation methods for 
exploiting remote sensing observations.  They hold promise 
for improving the mission data products by providing 

 
 

estimates of the uncertainties therein.  For scientists, 
knowledge of uncertainties helps to highlight areas that may 
benefit from further research.  Decision-makers routinely 
weigh risks of alternate decisions and will benefit from the 
estimates of uncertainty. 

State estimation methods admit modeling and observational 
errors within a probabilistic framework.  However, these 
methods typically assume that model time invariant 
parameters (e.g., soil hydraulic properties) are perfectly 
known.  But this is far from the case.  By assuming that they 
are perfectly known, it is further assumed that remote sensing 
observations do not speak to the values of these underlying 
parameters but only to the states. 

Parameter estimation methods, in contrast, can be applied to 
use remote sensing observations to improve the values of the 
unknown time invariant parameters.  However, with the focus 
on identification of the best fit, in most applications there is no 
reporting of the uncertainty in the estimation.  Implicitly it is 
assumed that there are a sufficient number of remote sensing 
observations to “identify” the model.  In addition, overly 
simplistic error structures are often used.  The familiar “least 
squares” estimation implicitly assumes a fairly restrictive error 
model (normally distributed, independent, zero mean and 
constant variance residual error). 

Bayesian methods are more flexible, accounting for 
uncertainties in time invariant model parameters and capturing 
stochastic sources of error.  The main challenge is 
computation time.  Fortunately, advances in Markov chain 
Monte Carlo (MCMC) algorithms and in computing power, 
are expanding the application of Bayesian methods to 
increasingly complex models.  These advancements are 
enabling a more complete accounting of uncertainties.  

The uncertainty resolution in such parameters and in the 
resulting model simulations serves as an important measure of 
the worth of remote sensing observations.  The uncertainty 
resolution is fully attributed to the information content of the 
remote sensing observations. 

Here we use a new uncertainty estimation subsystem of the 
NASA Land Information System to account for uncertainty in 
the modeling of soil moisture.   
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II. BACKGROUND 

A. Remote sensing of soil moisture 

Soil moisture is the focus of the NASA’s SMAP mission. 
Soil moisture plays a well-known role in the energy and water 
budgets for land-atmosphere exchange.  Accurate prediction 
of soil moisture requires a combination of land surface 
modeling and remote sensing.  Land surface models provide 
comprehensive spatial, temporal, and vertical resolution of soil 
moisture but are subject to considerable uncertainty.  Remote 
sensing provides spatially comprehensive measurements but 
these measurements are infrequent and representative only of 
the near surface (~1 cm). 

B. Land surface models 

Most land surface models (LSMs) solve for the transport of 
moisture within the soil using Richards' (1931) formulations.  
Expressions known as soil moisture characteristic curves 
relate soil moisture (Θ) with matric potential (ψ), and soil 
moisture with hydraulic conductivity (K).  The characteristic 
curves depend on a set of soil hydraulic properties (SHPs).  
One such set of characteristic curves includes as SHPs the 
saturated matric potential (߰௦; aka “bubbling” or “air entry”), 
the saturated hydraulic conductivity (ܭ௦), the saturated soil 
moisture content (porosity; ୱ), the residual soil moisture 
content (୰), and the pore size distribution index (ܾ). 

The  Noah LSM  used in this study was originally 
developed from the land component of the Oregon State 
University 1-D planetary boundary layer model (OSU; Troen 
and Mahrt, 1984).  Noah is currently employed as the land 
surface scheme in NCEP's operational version of the Weather 
Research and Forecasting Nonhydrostatic Mesoscale Model 
(WRF-NMM). 

C. Uncertainty in soil parameterizations 

The uncertainty in SHPs is generally ignored in LSMs.  
However, as SHPs vary spatially and are scale-dependent, the 
soil texture-SHP datasets on which estimates rely are often 
unrepresentative of soils outside of the datasets.  Further, the 
determination of SHPs from soil texture has associated 
uncertainties.  Lookup tables based on soil texture class do not 
recognize the wide within-class variability of SHPs.  The 
median (across soil texture classes and SHPs) coefficient of 
variation for a commonly used lookup table (Cosby et al., 
1984) was 60%. 

D. Accounting for uncertainty: Bayesian analysis via 
Markov chain Monte Carlo 

The variable θ is used to denote a vector of uncertain and 
unobservable parameters such as the SHPs.  The initial 
uncertainty in θ is described with the assignment of prior 
probability, p(θ).  When new data y is made available, p(θ) 
needs to be updated to posterior probability, p(θ│y).  This 
updating is achieved with application of Bayes’ rule of 
probability: 

ሻݕ|ߠሺ݌ ൌ
௣ሺ௬|ఏሻ௣ሺఏሻ

׬ ௣ሺ௬|ఏሻ௣ሺఏሻௗఏഇ

  (1) 

A standard numerical evaluation of Eq. 1 is not 

computationally tractable if there are many components of θ, 
as the denominator requires high dimensional integration 
(Gilks et al., 1995).  Markov chain Monte Carlo (MCMC) is 
typically required.  MCMC involves forming a carefully 
constructed chain—in Bayesian analysis, a chain of θ.  The 
Metropolis algorithm is the basis of many algorithms: 

 
For k = 1 to K 

Sample k
* from j(k

*| k-1) 
R= TargetDensity(k

*)/TargetDensity(k-1) 
AcceptProb = min(R, 1) 
If Rand() <= AcceptProb Then 

Set k =k
*  

Else 
Set k=k-1 

End If 
Next k 
 

where K is the sample size, 0 is the starting point, k* is the 
candidate point for inclusion as the k’th iteration of the 
Markov chain (k )as drawn from symmetric proposal 
distribution  j(k*|k-1,).  In the case of Bayesian analysis, 
TargetDensity() is the posterior density as given by Eq. 1.  
AcceptProb is the acceptance probability for the candidate 
point k*.  If accepted (Rand() < AcceptProb), then the point 
is included else the previous point is repeated in the chain.  
For an infinitely long chain, the frequency (density) with 
which a state θ is visited is its posterior probability (Gelman et 
al., 1996). 

Name Symbol Units Type Parameters Values

median 6.77

GSD 1.85

median 0.263

GSD 2.05

median 2.45E‐06

GSD 1.80

mean 0.465

std dev 0.0540

median 1.50

GSD 2.00

DistributionParameter

Inverse of pore size 

distribution index

Saturated matric 

potential

Saturated hydraulic 

conductivity

b

s

K s

s



lognormal

lognormal

lognormal

normal

lognormal

m
3
m

‐3

m
3
m

‐3

‐

m

m/s

Porosity

Standard deviation of 

residual error

Table 1.  Prior distribution for SHPs and error variance 



 3

III. METHODS 

A. Land surface modeling 

Santanello et al. (2007) demonstrated for several sites in the 
Walnut Gulch Experimental Watershed (WGEW) the use 
remote sensing data in the estimation of SHPs.  The SHPs 
were calibrated to PBMR observations of soil moisture 
collected during the Monsoon ’90 experiment.  The commonly 
applied sum of squares (“least squares”) criterion was used to 
find the best fit to the PBMR observations.  Here, we adopt 
the same case study time period, land surface modeling 
configuration, and remote sensing observations, but are 
interested in the uncertainty in the estimation of SHPs.  We 
focus on the Kendall site (site 5 of WGEW), one of the 
WGEW supersites. 

B. Bayesian analysis 

For the likelihood model, pሺߠ|ݕሻ, we use the normally 
distributed, independent, zero mean, constant variance residual 
error model that is implicit in least squares parameter 
estimation.  This selection allows us to examine in a 
comparable manner the uncertainty around the least squares 

solution. 
Each SHP’s distribution within a soil texture class is 

assumed a reasonable prior for soils of that class.  The prior 
(Table 1) is specified based on Cosby et al. (1984), with 
conversions to SI units.  As Cosby did not report any, we 
assume zero covariance between SHPs, though there certainly 
are some correlations. 

In addition to the SHPs previously mentioned, we include in 
θ the residual error standard deviation ሺሻ.  In Bayesian 
applications in hydrology, the standard deviation is often taken 
to be known and usually based on observational error (e.g., 
Vrugt et al., 2003). 

C. Uncertainty subsystem in the Land Information System 
(LIS) software 

As described in Kumar et al. (2006), LIS is designed using 
the principles of object-oriented frameworks, where all 
functional extensions (such as LSMs, DA algorithms, 
meteorological inputs, observational data, etc.) are 
implemented as abstract, extensible components.  A large suite 
of modeling extensions has been incorporated in LIS using 
this design paradigm.  The uncertainty and optimization 
subsystem in LIS defines three functional abstractions: (1) 
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Figure 1.  Updating of the SHP uncertainty with remote sensing 
observations.  Diagonal:   marginal distributions for the components of 
θ: prior based on Cosby et al. (1984) (blue), the posterior (histograms),  
seven point estimates (vertical lines).  Off-diagonal: Pair-wise marginal 
distributions for prior (blue pdf contours),, and posterior samples 
(black scatter); and seven point estimates.  A prior pdf given rock 
fraction corrections is shown as the dashed blue curve and contours. 
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variables (θ), (2) algorithm and (3) function of the variables 
(f(θ)).  An algorithm iteratively adjusts θ based on feedback 
f(θ).  A custom implementation of each of these three 
abstractions constitutes a specific instance of an 
optimization/uncertainty estimation problem.   

D. Differential Evolution Monte Carlo 

Two MCMC methods have been implemented to date 
within LIS: a random walk (RW) MCMC method and the 
Differential Evolution Monte Carlo (DE-MC) method.  Both 
have been implemented in parallel fashion to take advantage 
of the efficiencies of the parallel ensemble run capability in 
LIS. 

Both MCMC algorithms are special cases of the Metropolis 
algorithm.  Differential Evolution Monte Carlo (DE-MC) is an 
example of adaptive MCMC in which the proposal 
distribution adapts to the scale and orientation of the posterior 
distribution as it is learned (ter Braak, 2006).  In addition, DE-
MC is an example of a population-based MCMC method in 
which a population ߠ ൌ ሼߠ௞

ଵ, ௞ߠ
ଶ, … , ௞ߠ

ேሽ is advanced with each 
iteration (Jasra et al., 2007). The results shown here are for 
DE-MC.   

IV. RESULTS AND DISCUSSION 

DE-MC was run for Site 5 (Kendall) of the Walnut Gulch 
Experimental Watershed for the Monsoon ’90 experimental 
time period.  The shift from the prior distribution ݌ሺߠሻ to the 
posterior distribution ݌ሺݕ|ߠሻ is represented in Figure 1.  The 
translation of the prior and posterior uncertainty to the soil 
moisture simulation is shown in Figure 2. 

A. Large uncertainty around the parameter estimation 
solutions 

In Figure 1, the triangles in the fairly dense regions of the 
pair-wise scatterplots represent the least squares solutions 
found through various algorithms.  Clearly in this case, 
reliance on the least squares solutions ignores substantial 
remaining uncertainty. 

B. Large uncertainty reduction from remote sensing 

In Figure 2, the upper and lower lines represent the 17th and 
83rd percentiles of the distribution of soil moisture at each time 
step, i.e., an interval with two-thirds chance of containing the 
true soil moisture.  There is an approximately five-fold 
uncertainty reduction for much of the soil moisture time 
series.  This five-fold reduction is a direct measure of the 
benefits of the remote sensing observations.   

C. Limited influence of the  prior 

Most striking is the shift away from the prior distribution.  
This shift can be seen in the parameter space and output (soil 
moisture) space.  In the pairwise marginal plot for ୱ-ܾ (4th 
row, 1st column) the majority of the mass can be seen to curve 
around the prior.  Were it possible to view the full five-
dimensional space, the mass would be seen to lie nearly fully 
outside of the outside contour.  In the soil moisture time series 
(Figure 1), the shift away from the prior is similarly dramatic.  
The soil moisture values shift markedly down from the prior 

to the posterior, becoming much more in line with the PBMR 
observations (green circles). 

The lack of the influence of the prior is attributed to the 
soils datasets not representing the soil under consideration.  
The soils of the region have an unusually high rock fraction.  
However, it is also likely that the systematic biases of the 
LSM are being absorbed by the SHPs.  Given the zero-mean 
bias assumption of the error model, any systematic bias would 
be absorbed by the SHPs.  Research into the development of 
more realistic error models would improve the accounting of 
uncertainty. 

D. Important to consider uncertainty in the error model itself 

In practice, the statistical parameters of the error model are 
assumed known even though they, too, are subject to 

considerable uncertainty.  Least squares implicitly assumes  
to be known.  Here, we have explicitly admitted uncertainty in  

 by including it in θ.  In reference to the marginal distribution 

for  (row 5, col. 5 of Figure 1), it is clear that much 
uncertainty remains. 
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