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Outline

* Review of Earth’s Energy Budget and Infrared Greenhouse Effect

 Measurement of IR spectra at top (and bottom) of the
atmosphere

 Measurement of IR spectra within the atmosphere

e On to orbit — to the CLARREO mission

* Summary
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Projects

 [IP 2001: FIRST
— Far-Infrared Spectroscopy of the Troposphere

 [IP 2004: INFLAME
— In-situ Net Flux within the Atmosphere of the Earth

* 1IP 2007: CORSAIR

— Calibrated Observations of Radiance Spectra from the Atmosphere in the
Infrared

 ACT 2008: FIREBIB
— Far-Infrared Blocked Impurity Band Detectors

 Radiation Sciences 2008: FORGE

— Far-Infrared Observations of the Radiative Greenhouse Effect

Goal: To significantly advance ability to observe the
infrared spectrum from space, within the atmosphere,

_,@ _ and from the ground



Earth’s Energy Budget
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Earth’s Outgoing Longwave Radiation
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FIRST Instrument

FIRST - Far-Infrared Spectroscopy of the Troposphere

— Developed under NASA Instrument Incubator Program of ESTO

— Michelson Interferometer

* 6 to 100 um on a single focal plane

* 0.625 cm™ unapodized (0.8 cm OPD)

* Germanium on polypropylene beamsplitter
* Bolometer detectors @ 4 K

— Demonstrated on a high-altitude balloon flight June 7 2005
— Second balloon flight September 18 2006

— Ground-based capability demonstrated March 2007

— Selected by NASA for FORGE Campaign in Chile in 2008

— FORGE Campaign August — October 2009




FIRST Spectrometer Overview
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FIRST Thermal Infrared Spectrum - TOA
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Earth’s Energy Budget
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Earth’s Downwelling Infrared Radiation — at Surface

Tropical Atmosphere
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The FORGE Project — Scientific Objective

Use new observational capability provided by FIRST to directly observe and quantify entire
infrared greenhouse effect — at Earth’s surface

Conduct “radiative closure” experiment
— Measure infrared radiation emitted by the atmosphere — at Earth’s surface looking up
— Simultaneously measure temperature and water vapor profiles to provide inputs for theory

Conduct experiment at high, dry location — Cerro Toco, Atacama Desert, Chile
— Altitude: 17, 600 feet above sea level. Mean pressure ~ 0.5 Atmosphere
— Precipitable Water Vapor < 1 millimeter

Part of larger “RHUBC-II” Campaign run by Dept. of Energy
— Teams from U. Wisconsin, AER Inc., Italy, Germany, PNNL, Los Alamos NL, U. Denver, NASA Langley

Safety of Team during deployment at altitude was paramount




Operations at 17,600 Feet




FIRST Far-IR Spectrum — 09/05/09
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September 5 2009 — PWV = 0.75 mm
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September 5 2009 — PWV = 0.75 mm

FIRST Radiance from Cerro Toco
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September 19 2009 — PWV = 0.4 mm

FIRST Radiance from Cerro Toco — Sept. 19 2009
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September 19 2009 — PWV = 0.4 mm

FIRST Radiance from Cerro Toco — Sept. 19 2009
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FIRST Summary

* Successfully developed unique instrument to measure, at
high spectral resolution, the complete infrared spectrum of
the Earth and atmosphere

* Transitioned from “Incubator” to operational science
instrument
 Demonstrated technologies in:
— FTS

— Beamsplitter
— Focal Plane

* Onto INFLAME and measurement of IR radiation within the
atmosphere
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INFLAME - Fundamental Aspects

Every atmospheric model has essentially 3 equations:
- Momentum: (F = ma)
- Continuity: (Conservation of mass)
- Energy: (First Law of Thermodynamics)

Energy equation requires knowledge of rate at which
atmosphere heats and cools:

- Radiation
- Latent process (water condensation/evaporation)
- Conduction

INFLAME Goal: Measure the rates of heating & cooling of
the atmosphere by visible and infrared radiation



In-Situ Net Flux within the Atmosphere of the Earth

Atmospheric Heating and Cooling Rates

F1(z) = j’](z)‘u dQ2 IFT £l 1

: T
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Fo(2) = F1(z)-F| () [ |
£ _ 1 aFnet(Z)
it pC, oz

Require an instrument to directly measure the net flux




Measuring Net Flux Divergence

 From an airborne platform:

HF' Z,
— Measure Net Flux at Z, "/
o~
s |
— Measure Net Flux at Z, A
IF*

 Approximate Heating Rate by:
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Langley Research Center

INFLAME Approach: F+ and F-

 Most instruments measure radiance, \

not flux.
T Input rays

» Measuring flux requires collecting ;,“\
light over a full hemisphere. ”M\\
//’mﬁ{\\

* We use a non-imaging Winston cone '/;' "\W

to collect radiation and collimate it M,\' Winston cone
into an /6.8 beam. '.I, | :'
'\

— Input aperture is 1 mm diameter. /' 1
— Output aperture is 13.6 mm "‘ |
diameter. ]’\ /" N «— Output rays




Langley Research Center

INFLAME Optical Layout

Detectors and

preamps
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Detector Offner primary.
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Langley Research Center

INFLAME Approach: Fz

 Direct uplooking and
downlooking apertures to the | =~ ooveinsroer

two inputs of a 4-port Fourier " e
transform spectrometer NH ‘
(FTS); |

« Scan FTS to produce X
complimentary TN A, Vi
interferograms at two N
outputs; a

» Fourier transform
interferograms to estimate NH %
the spectrum of the net flux

Fz = F+ - F-




Langley Research Center

INFLAME Measurement Platform

Learjet

INFLAME
mounted in
wingtip fuel
tanks



Langley Research Center

Fuel Tank Integration
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Langley Research Center

LW Compatibility: 7/29/2009




Langley Research Center

LW Flight Install: 1/4/2010




Langley Research Center

Flight Track and Accelerometer
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Langley Research Center

MODIS Visible Imagery




Langley Research Center

INFLAME Data Product
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Altitude (km)

Langley Research Center

INFLAME LW Net Flux
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Allitude, km

Langley Research Center

INFLAME Derived LW Cooling Rates
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Langley Research Center

INFLAME Flight Results

Summary
 IRFTS (LW) Successfully demonstrated during flight

— First direct measurement of net fluxes and
cooling rates within the atmosphere

— Analysis is ongoing

« UV-NIR FTS (SW): No useful flight spectra obtained.

— Commercial controller failed due to excessive
drift with temperature before takeoff.



Earth’s Outgoing Longwave Radiation
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CORSAIR — Langley’s Current IIP

* FIRST, INFLAME demonstrate numerous technologies for FTS

 Some CLARREO - specific technologies remain

* CORSAIR IIP Project addresses:
— Broad bandpass beamsplitters: ITT
— Warm high sensitivity detectors: RVS
— Blackbody radiance sources: SDL

* CORSAIR presently in year 2 of 3
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M. . Technology Development Heritage

« LaRC has been developing technology for CLARREOQ for nearly
one decade
— FIRST and INFLAME FTS instruments developed and flown

— CORSAIR and FIREBIB projects in progress
» Detectors, beanﬂligalnj};[me?gl,mglackbodies in development

S e

0 800 700

— Verification system elements in develoment
o o - X
Blackbodies #%p = QCL " Phase Change r}‘
Emissivity Monitoring L(_ S Y Cells !
] —

Key CLARREO technologies in development to TRL 6
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Summary — Incubator to Orbit

* FIRST instrument successfully developed and demonstrated and
transitioned to operational scientific instrument in FORGE campaign

* INFLAME instrument successfully developed and demonstrated —
awaiting opportunity for science campaign

* CORSAIR Project developing and demonstrating component technologies
specific to CLARREO Mission

* Additional CLARREO-specific technologies being developed by U.
Wisconsin and Harvard

* These ESTO-IIP efforts are paving the way to CLARREO via science and
instrument technology
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Onto the Future — The CLARREO Mission
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* FIRST, INFLAME demonstrate FTS instrument technology
« CORSAIR is developing CLARREO-specific component technology

« Advancing calibration and climate system measurement knowledge

* Enabling development of CLARREO IR FTS instrument
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Radiance Difference — 09/05/2009
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Radiance Difference — 09/05/2009
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Langley Research Center

Instrument Overview

* We use two instruments to cover the required spectral
range:

— LW instrument covers thermal IR, 100 ym to 3 ym.
— SW instrument covers solar, 3 ym to 0.3 ym.

« Main differences between LW and SW are the
calibration sources, optical coatings, and detectors.



Langley Research Center

Measurement Overview

Consider a unit cube in the terrestrial
atmosphere:

— Spectral flux is the energy per unit frequency
interval flowing through one face (F* or F);

— Net Flux is the difference in energy flowing
through one face in opposite directions:

Fz=F"-F
— Flux divergence is given by dFz/dz;
« Assume dFx/dx and dFy/dy are small.

Radiative heating rate is estimated from the
measured flux divergence:

1 km

Z =35 Km




September 5 2009 — PWV = 0.75 mm
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September 19 2009 — PWV = 0.4 mm
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ent

" INFLAME Objective

Measure the spectral dependence of radiative heating
rates in the troposphere.

- Flight demonstration goal is to measure net flux with
sufficient stability to estimate radiative heating rates
from the net flux divergence in 1 km layers of the
troposphere with an accuracy of 10%

Milestones:

- Proposed: 11/2004
- Funded: 11/2005

- Calibration: 7/2009
- Test flight: 1/5/2010



Langley Research Center

Measurement Challenge

« What if we use uplooking and downlooking instruments
to measure fluxes as functions of altitude, subtract to get
net flux, and take the derivative to get flux divergence?

— Need to measure small changes in the difference of
large numbers:

F+, W/im2 F-, Wim2  Fz, Wm2 dFz/dz, W/m2 km
Thermal IR 344 263 81 16.1
Solar 80 768 -688 -13.6

« Small systematic errors in measured F+ and F- can
easily be as large as dF(z)/dz.



Altitude (km)

Langley Research Center

INFLAME LW Upwelling Flux
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Altitude, km

Langley Research Center

INFLAME LW Downwelling Flux
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