Imaging Spectrometer Science Measurements for Terrestrial Ecology: AVIRIS and the Next Generation

AVIRIS Characteristics and Development Status

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA, 91109
OVERVIEW

- Objective
- Spectroscopy or multi-spectral
- Signals
- Imaging Spectroscopy
- Example of Imaging Spectroscopy based Science
- AVIRIS classic measurement characteristics
- Next Generation AVIRIS science measurement characteristics
- Next Generation Design and Status
- Summary
OBJECTIVE

• Answer next generation science questions with calibrated high uniformity and high signal-to-noise ratio imaging spectroscopy measurements
SIGNALS VEGETATION

Plant Spectroscopy

Absorption coefficient

Leaf Water & Cellular Scattering
Conifer
Grass
Broad Leaf
Sage Brush
Non-Photosynthetic Vegetation
Cellulose, Lignin, Sugars

Photosynthesis

6H₂O + 6CO₂ + photon → C₆H₁₂O₆ + 6O₂

Radiance (W/cm²/sr)

Atmospheric Water Vapor & Canopy water
Leaf Water, C, N
Atmospheric Carbon Dioxide
Imaging Spectroscopy Concept

Each spatial element has a continuous spectrum that is used to analyze the surface and atmosphere.

224 spectral images taken simultaneously.
SPECTROSCOPY OR MULTISPECTRAL

Spectroscopy is required

Multi-Spectral is Insufficient
JPL EXPERIENCE

- AIS: Retired in AVIRIS lab
- AVIRIS: Now flying in NASA ER-2
- NIMS, VIMS: VIMS orbiting Saturn
- Hydice: Retired
- Hyperion: Orbiting Earth
- [CRISM]: Orbiting Mars
- MaRS: Flying for DOD customer on various aircraft
- MMM (M3): Moon flight mission complete
- ARTEMIS: Orbiting the Earth
- PBTB and ISTB: Ongoing laboratory test bed activities

[] = minimal JPL involvement, but important lessons learned.
RED = sensor no longer operating.
AVIRIS “CLASSIC” SCIENCE MEASUREMENTS

<table>
<thead>
<tr>
<th>Spectral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>380 to 2500 nm</td>
</tr>
<tr>
<td>Sampling</td>
<td>10 nm</td>
</tr>
<tr>
<td>Response</td>
<td>10 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiometric</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to Max Lambertian</td>
</tr>
<tr>
<td>Sampling</td>
<td>14 bit</td>
</tr>
<tr>
<td>Calibration</td>
<td>+/- 1nm</td>
</tr>
<tr>
<td>Signal-to-Noise ratio</td>
<td>>1000 @ 600 nm</td>
</tr>
<tr>
<td></td>
<td>>400 @ 2200 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spatial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-of-View</td>
<td>34 degrees</td>
</tr>
<tr>
<td>Instantaneous FOV</td>
<td>1 milliradian</td>
</tr>
<tr>
<td>Spatial swath</td>
<td>2.5 to 11 km @ alt (4 to 20 km)</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>4 to 20 m @ alt (4 to 20 km)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniformity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral-Cross-Track</td>
<td>>95% Uniform</td>
</tr>
<tr>
<td>Spectral-IFOV</td>
<td>>95% Uniform</td>
</tr>
</tbody>
</table>
AVIRIS-NG KEY SCIENCE REQUIREMENTS

What is needed in the instrument/measurement:

- High Signal-to-noise ratio required for molecular spectroscopy
- Uniformity is required for spectroscopy in the image domain
- Excellent calibration for quantitative results (spectral, radiometric, spatial)

![Graphs and images showing signal-to-noise ratio and calibration requirements.]

22 June 2010

NASA Earth Science Technology Forum
Depiction
- Grids are the detectors
- Spots are the IFOV centers
- Colors are the wavelengths

>95% spectral cross-track

>95% spectral IFOV
RESEARCH AND APPLICATIONS

• Atmosphere: water vapor, clouds properties, aerosols, absorbing gases …
• Ecology: chlorophyll, leaf water, lignin, cellulose, pigments, structure, nonphotosynthetic constituents …
• Geology and soils: mineralogy, soil type …
• Coastal and Inland waters: chlorophyll, plankton, dissolved organics, sediments, bottom composition, bathymetry …
• Snow and Ice Hydrology: snow cover fraction, grainsize, impurities, melting …
• Biomass Burning: subpixel temperatures and extent, smoke, combustion products …
• Environmental hazards: contaminants directly and indirectly, geological substrate …
• Calibration: aircraft and satellite sensors, sensor simulation, standard validation …
• Modeling: radiative transfer model validation and constraint …
• Commercial: mineral exploration, agriculture and forest status …
• Algorithms: autonomous atmospheric correction, advance spectra derivation …
• Other: human infrastructure …
AVIRIS “CLASSIC” 100S OF FLIGHTS OVER 20 YEARS
22 June 2010

a thoughtful, dedicated JPL team
VEGETATION FUNCTIONAL TYPE ANALYSIS, SANTA BARBARA, CA
Dar Roberts, et al, UCSB

MESMA Species Type 90% accurate

Species Fractional Cover

NASA Earth Science Technology Forum 16
CERRO GRANDE FIRE SEVERITY, LOS ALAMOS, NM, RAY KOKALY

AVIRIS Spectral Fitting Map

- Ash/Charcoal
- Mineral/Ash
- Mineral-1mm
- Mineral-2mm
- Dry Conifer
- Dry & Green Conifer
- Straw matting
- Straw matting & Green grass
- Green Vegetation

Lignin-Cellulose Lab

Lignin-Cellulose AVIRIS

Photo

22 June 2010 NASA Earth Science Technology Forum
Remote Measurement via Spectral Fitting

Surface mineralogy
Cuprite, NV

22 June 2010
NASA Earth Science Technology Forum
SURFACE COMPOSITIONAL DERIVED WITH IMAGING SPECTROMETER MEASUREMENTS (AVIRIS)
A red-tide bloom in Monterey Bay

Surface Chlorophyll from AVIRIS 10/07/02

Surface Chl from SeaWiFS 10/08/02

SeaWiFS bands miss signal
SIMI VALLEY, CA WILD FIRE

22 June 2010

NASA Earth Science Technology Forum
Mount Rainier derived three phases of water (Vapor: blue, Liquid: green, Ice: red) in melting snow environment.
NEXT GENERATION AIRBORNE VISIBLE / INFRARED IMAGING SPECTROMETER (AVIRIS-NG) AMERICAN RECOVERY AND REINVESTMENT ACT (ARRA)

Design and build follow-on to AVIRIS (higher sampling, high signal-to-noise)

• Task Budget: $5M
• Task Schedule: September 1, 2009 – October 1, 2010
AVIRIS NEXT GENERATION

SCIENCE MEASUREMENTS

<table>
<thead>
<tr>
<th>Spectral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>380 to 2500 nm</td>
</tr>
<tr>
<td>Sampling</td>
<td>10 nm 5 nm</td>
</tr>
<tr>
<td>Response</td>
<td>10 nm 5-7 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiometric</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to Max Lambertian</td>
</tr>
<tr>
<td>Sampling</td>
<td>14 bit</td>
</tr>
<tr>
<td>Calibration</td>
<td>+/- 1 nm +/- 0.1 nm</td>
</tr>
<tr>
<td>Signal-to-Noise ratio</td>
<td>@ 600 nm @ 2200 nm</td>
</tr>
<tr>
<td></td>
<td>>1000 @ 600 nm >2000</td>
</tr>
<tr>
<td></td>
<td>>400 @ 2200 nm >1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spatial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-of-View</td>
<td>34 degrees</td>
</tr>
<tr>
<td>Instantaneous FOV</td>
<td>1 milliradian</td>
</tr>
<tr>
<td>Spatial swath</td>
<td>2.5 to 11 km @ alt (4 to 20 km)</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>4 to 20 m @ alt (4 to 20 km)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uniformity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral-Cross-Track</td>
<td>>95% Uniform</td>
</tr>
<tr>
<td>Spectral-IFOV</td>
<td>>95% Uniform</td>
</tr>
</tbody>
</table>
AVIRIS-ng Instrument Configuration

AVIRIS-ng consists of:

- Sensor
- On board calibration source
- INS/ GPS
- Heater, cryocooler, and focal plane electronics
- Operator/Software Rack Assembly
- ECS Rack Assembly
- Cabling and Plumbing

* Not an AVIRIS-ng component
AVIRIS-NG COORDINATES

Origin at Slit

Direction of Flight

Gravity

20.5 Deg

Origin at Slit

NASA Earth Science Technology Forum

22 June 2010
Sensor Configuration

- Cryocoolers (2X)
- Thermal Shields, Active Thermal Control
- Thermal Shields, Passive (2X)
- Telescope
- Window
- Vacuum Chamber
- Spectrometer
- Kinematic Struts, Active Thermal Control

22 June 2010

NASA Earth Science Technology Forum
System Operation

• Pushbroom imager collects image “lines”
• Image lines are collected into data “cubes”. Typical cubes are taken over 20 minute runs.
• Image “swath” is the width of the data cube. Swath dimensions are a function of altitude.
• Cube data are geo-rectified using GPS/INS data to correct for platform motion
• Cubes are radiometrically calibrated against a stable on-board source before and/or after each run
• The NISDVU is designed to be easily integrated with LIDAR
OFFNER SPECTROMETER, 2 MIRROR ANASTIGMAT HIGH-THROUGHPUT TELESCOPE
SIMPLE SYSTEM: 4 MIRRORS, 1 GRATING, 1 DETECTOR
ASSEMBLED TESTBED TELESCOPE

Achieved 1.1 wave p-v wavefront error over entire aperture and field with minutes of assembly time.

Notice non-circular pupil shape.

Post-polished aluminum mirrors produced by Axsys.

Previous Axsys mirrors fail mid-frequency specification by a factor of 2-3, impact acceptable (see risks and mitigations later).
SPECTROMETER PERFORMANCE
(X- AND Y- ENCLOSED ENERGY IN PIXEL)
(ACCOUNTS FOR APODIZATION)

22 June 2010
NASA Earth Science Technology Forum
ON-BOARD CALIBRATOR

• Maintain absolute radiometric calibration within 95% across all spectral channels within the FOV

• As designed will also
 – Allow image specific flat fielding to control small radiometric variability and deviations
 – Allow trend monitoring to detect performance issues early

• To meet the requirements we will use a refinement of the on-board calibrator source currently flying and meeting these requirements in AVIRIS and MaRS.
OBC TARGET

• OBC target in front of slit
• Mature OBC approach with extensive heritage
• We have tested the use of the OBC target at the slit entrance
• OBC now in testing for installation into AVIRIS-ng
INSTRUMENT CRYOVACUUM ARCHITECTURE

- Cryocoolers, power supplies, and drive electronics
- Recirculating fluid chiller removes heat from cryocoolers
- Temperature monitoring and control maintains FPA temperature stability and optical alignment (multiple locations on instrument)
- Vacuum-ion pump and gauge

 Decision on use of the ion pump is pending system performance evaluation
- Cryo wiring harness is fabricated in-house; not shown

22 June 2010

NASA Earth Science Technology Forum
CRYOVACUUM SUBSYSTEM
OPERATIONAL CONDITIONS

Vacuum enclosure carries window, cryocoolers, all electrical and vacuum feedthroughs, all mechanical loads

cryocooler cold ends ~110 K steady-state
Both coolers run for cooldown, then one switches off.
(Straps to inner shield and spectrometer are not shown)

Thermally-isolating kinematic struts support instrument from warm outer vacuum shell (318 K maximum environmental temperature)

Two “floating” and one actively-cooled radiation shields reduce heat input to spectrometer:
1st shield ~288 K, floating
2nd shield ~235 K, floating
actively-cooled shield ~125 K, controlled

Spectrometer and telescope temperature are actively controlled to <50 mK variation

FPA is cooled to ≤140 K and actively controlled.
(Dedicated high-conductance strap to cold sink not shown.)
DESIGN /FABRICATION STATUS

- Design complete
- Mechanical and Cyro-vacuum parts now in fabrication
- 45% of parts now received, complete in August 2010
I&T STATUS

• Facility Ready
• Personnel trained
• GSE design complete – now in build
• Plans, procedures and storyboards in review
• “Pre” I&T now underway
• I&T begins July 2010
• Focal Plane Interface Electronics
 • only 1 analog board (only 1 focal plane assembly)
 • FPGA programming has been modified
 • 1 Focal Plane Assembly (no multiplexing)
 • uses MaRS 14-bit capability (MaRS only used 12 bits)
 • MaRS pedestal shift problem identified and corrected
 • GPS time tag incorporated (requirement)
 • 1st pixel clock extension incorporated (for warmer FPA operation)
 • line buffers enable non-interleaved data output
 • larger FPGA (pin-compatible and EEPROM compatible)
• Camera Link Data Path (to next-generation frame grabber card)
• OBC and control electronics
• C-MIGITS III INS/GPS
FOCAL PLANE ARRAY

- Well-known Teledyne TCM6604A
- Capacitive transimpedance amplifier
- Snapshot imaging
- 4 video outputs, 1 ref output (unused)
- 4 clocks, 7 bias voltages
- Power dissipation: $\sim 60\text{mW}$
- Read noise: 120 e- [rms]
- Amplifier glow: $\sim 100 \text{e-/sec}$
- Recent understanding of a phenomenon affecting blue-end QE stability is yielding processing steps for mitigation
- Devices are straightforward to fabricate using current vendor processes
- Custom JPL drive electronics exist and work extremely well with this FPA
I&T FLOW DIAGRAM

NGIS Integration and Test Plan

System I&T

Warm Alignment Plan and Storyboard

Alignment of Spectrometer

Spectrometer Orientation & Optics Verification

Rate of Telescope

Mate of Fixed Plane Tower

Mechanical-Thermal/Vacuum Story Board

Integrate Instrument Sub-Assembly to Vacuum Vessel

Assemble OBC Linkage and Attach to Target & Drive

Install FPA Route final internal cables

Calibration Plan

Cold Calibration Baseline Cycle 1

Calibration Procedure

Cold Calibration Baseline Cycle 2

Calibration Procedure

Cold Calibration Baseline Cycle 3

Calibration Procedure

Cold Calibration Baseline Cycle 4

Calibration Procedure

System Testing

Cold Cycle 1

Final thermal test (all 4, cold cycles)

Final Pressure Procedure

Final Alignment Procedure

22 June 2010

NASA Earth Science Technology Forum
MECHANICAL/THERMAL/OPTICAL INTEGRATION PROCEDURE

NGIS Integration Procedure

Alfonso Feria
Version 0.6
June 2nd, 2010

- **Purpose**
 - Story board for the integration process
- **Description**
 - Provide hardware information (adhesives, fasteners, parts lists, etc.) to aid during integration
 - Provide installation notes
 - Record bolt torque values
 - Document torque wrench information
 - Collect and document thoughts and notes before, during and after integration
- **Status**
 - Done

22 June 2010

NASA Earth Science Technology Forum
Description:
A step-by-step visual guide to the warm alignment process, including GSE needed and verification steps

Status: Done
Successful peer review 06/09/10
SUMMARY

• The science enabled by a high uniformity and high signal-to-noise ratio imaging spectroscopy is well established
 – AVIRIS referenced in > 600 refereed journal articles

• We understand the key measurement characteristics that are needed

• We have developed the right set of requirements flowing from the science

• Throughout the AVIRIS-ng effort, these science traced requirements will be tracked, balanced, and reported to assure the instruments are ready for the next generation science

• The design is complete and being manufactured

• AVIRIS-ng is being built and will be integrated this summer