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Abstract – We develop technologies for dynamic and near-
real-time validation of space-borne soil moisture 
measurements, in particular those from the Soil Moisture 
Active and Passive (SMAP) mission. Soil moisture fields are 
functions of variables that change over time across the range 
of scales from a few meters to several kilometers. We 
develop a sensor placement policy based on nonstationary 
spatial statistics of soil moisture, and for each location, 
develop dynamic scheduling policies based on physical 
models of soil moisture temporal dynamics and microwave 
sensor models for heterogeneous landscapes. Furthermore, 
we relate the ground-based estimates of the true mean to the 
space-based estimates through a physics-based statistical 
aggregation procedure.  An integrated communication and 
actuation platform is developed and used to command the 
sensors and transmit their data to a base station in real time. 
Full-scale field experiments are planned in coordination with 
SMAP calibration/validation experiments to prototype the 
validation system. This paper summarizes the progress and 
results of the first year of the project, where we have 
developed and tested several candidate approaches for 
sensor placement based on analyses of simulated data, 
developed an analytical method for joint optimization of 
placement and scheduling of sensors, built a versatile 
landscape simulator for SMAP radar that can produce 
backscatter data at arbitrary spatial resolutions, and made 
progress on the development of multihop wireless sensor 
architecture and hardware. 
 

I. INTRODUCTION 
 
This project seeks to develop technologies for near real-time 
validation of spaceborne soil moisture estimates, and in 
particular those derived from the Soil Moisture Active and 
Passive (SMAP) mission [1]. Soil moisture fields possess 

complex dynamics on multiple spatial and temporal scales. 
Furthermore, within the coarse resolution cells of SMAP 
(O(km2) to O(10km2)) observed landscapes could exhibit 
significant heterogeneity. Therefore, a traditional spatially 
uniform and temporally sparse sampling scheme is 
inadequate for SMAP product validation. Instead, a ground 
network of sensors needs to be designed that optimally 
captures the nonstationary statistics of the soil moisture 
fields in space and time, and relates them to the aggregate 
space-based estimates. Through a previous project under the 
NASA/ESTO Advanced Information System Technologies 
(AIST) task, we have gained significant expertise in the 
dynamic control of ground sensors based on temporal 
statistics of soil moisture fields. Here, we leverage our 
expertise to solve the joint problems of optimum sensor 
placement and sensor scheduling for obtaining the true mean 
of soil moisture fields subject to accuracy and cost 
constraints. We further relate the ground-based estimates of 
the true mean of soil moisture to the space-based estimates 
through a physics-based statistical aggregation procedure. 
Full-scale field experiments are planned to prototype the 
validation system using ground sensors and L-band radar 
data. 

We develop the spatial placement design, wireless 
communication system, and dynamic operation rules for soil 
moisture stations that provide estimates that are near-real-
time, autonomously operated (hence can operate over 
extended times), and are compatible with SMAP data 
products. The sensors will communicate with a central 
coordinator and actuate measurements only when their 
measurement significantly adds value to the across-network 
computation of the field mean. The principal technology 
innovations that make this possible are: 
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• optimal design of sensor node placement  and 
scheduling based on modeled soil moisture spatial 
statistics 

• strategies for deriving large-scale space-based 
estimates of heterogeneous soil moisture that are 
compatible with ground-based estimates of true 
mean of soil moisture fields  

• telecommunication protocols and actuation systems 
that configure the sampling within the network to 
yield large-scale field mean conditions.  

Upon successful completion of the project in 2012, the 
technology readiness level (TRL) is expected to be at 6, on-
track for integration into an operational scenario for SMAP 
by the time it launches in 2014. This paper describes 
progress towards three main objectives of this project: 
 
Objective 1 – Optimal design of sensor node placement bas
ed on soil moisture spatial statistics  
 
Objective 2 - Reconciling space-based estimates of soil 
moisture fields with ground-based estimates of its true 
mean for heterogeneous terrain 
 
Objective 3 – Development of ground sensor actuation and 
telecommunication protocols, deployment, and field 
experiments 
 

II. SENSOR PLACEMENT (OBJECTIVE 1) 
 
The true mean of soil moisture fields is a function of time 
and of the state of the soil surface. Its determination ideally 
would require a very fine sampling of the area over a 
satellite footprint, both spatially and temporally.  This, 
however, is cost prohibitive; manually installing these 
sensors is expensive, and their battery power does not allow 
us to continuously sample, as we need them to last a 
reasonably long period of time (months or even years).  
These considerations pose severe limitations on how many 
sensors can be made available, and how frequent they can be 
used/activated. The overall objective is thus to place and 
activate sensors such that the field mean may be estimated to 
a desired accuracy subject to budgetary constraints, e.g., the 
total number of sensors available, the total amount of 
available energy at each sensor, and bandwidth. 
 There are two elements to the above problem; one 
is the determination of the best set of locations within the 
sensing field to place a limited number of sensors (sensor 
related cost constraint), and the other is the optimal dynamic 
operation of these sensors, i.e., when and which to activate, 
once they are placed (energy constraint). These two elements 
are coupled.  For instance, if energy of operation is a bigger 
concern than placement costs, then one can choose to place 
more sensors to compensate for a desired, reduced sampling 
rate.  The reverse holds as well.  In addition, activation and 
sampling decisions can influence where sensors should be 
placed and vice versa. But jointly considering and 
optimizing both elements leads to a problem whose 

complexity is prohibitive both analytically and 
computationally.  

Here, we use a decomposition method, where we 
will solve the two problems sequentially in two steps, 
respectively: the placement step and the scheduling step.  In 
the first step, we will address the sensor placement problem 
under the assumption that these sensors will be operated in a 
continuous sampling mode, i.e., assuming no loss of 
accuracy in the scheduling step.  In the second step, we will 
address the sensor scheduling/activation problem for a fixed 
time horizon for fixed sensor locations.  The two steps will 
then be iterated offline so as to compensate for certain loss 
of optimality due to the decomposition. It’s worth noting 
that both steps are off-line procedures.  In particular, a 
sensor placement solution will be obtained before field 
deployment, and similarly, sensor-scheduling algorithms 
will be derived and implemented ahead of real-time 
measurements. Afterwards, the actual operation of the 
system is real-time, in that all of our proposed 
communication and control architectures are in real-time, 
which in turn updates its estimate on the true mean of the 
field in real-time.  

For the sensor placement problem, we must place a 
limited number of sensors so as: (i) to exploit effectively the 
spatial and temporal correlation of soil moisture across the 
area under consideration, and (ii) to minimize the cost of 
communication with the base station. A particularly 
challenging feature of this problem in our context is the fact 
that the spatial statistics of soil moisture fields are highly 
variable with time, reflecting rain pattern after storm, 
drainage pattern at beginning of dry-down, and soil and 
vegetation pattern later in dry-down [2]-[6].  This is very 
different from the common Gaussian assumption of a 
sensing field [7]. 

The sensor placement problem has been studied for 
a variety of application scenarios; examples include 
underwater sensing [8]-[9], structural fault detection [10], 
and detecting landslides [11]. Each application has 
considered a different objective than the one we aim at here, 
which is obtaining the best estimate of the field mean. To 
effectively address our sensor placement problem, we first 
need to discretize the continuous sensing field into a finite 
number of regions, each corresponding to a possible location 
to place a sensor. The resulting problem is highly 
challenging when the number N of possible sensor locations 
and the number M of available sensors (M<<N) are large, 
and a brute-force enumeration method is not an option.  It is 
also non-trivial due to the special statistical features of soil 
moisture data, which are state dependent and dynamic over 
time. To be able to formulate the aforementioned 
optimization problem, one approach is to derive the steady-
state statistics of soil moisture using probability distribution 
of the surface state.  Alternatively, we can try to formulate 
and solve individual optimization problems, one for each 
surface state (i.e., with steady-state soil moisture statistics 
given that state).  These result in potentially different sensor 
placement solutions, and will need to be combined, e.g., 
through some type of weighted average using surface state 
distribution.  In this project we will explore both approaches.  
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For lack of real data, here we instead use simulated 
soil moisture data generated by a state-of-the-art soil 
moisture simulator, called the Triangulated Irregular-
Networks (TIN)-based Real-time Integrate Basin Simulator 
(tRIBS) [12]-[13]. Soil moisture varies as a function of time 
and three-dimensional (3D) space in response to variable 
exogenous forcings such as rainfall, temperature, cloud 
cover, and solar radiation. It is also influenced by landscape 
parameters such as vegetation cover, soil type, and 
topography. The model is used to simulate long time-series 
realizations of the soil-moisture over a 2km x 2km basin 
with an arbitrary topography and drainage channels, a 
nominal version of which is shown in Figure 1.  

 
Figure 1. An example of tRIBS simulation domain showing a drainage 
basin with arbitrary topographic relief. 
 

Soil moisture observations are collected at 9 
different depths for each of the 2400 different surface 
locations over this sensing field. The entire data set consists 
of 2208 snapshots taken over a period of three months (in 
simulation time), once per hour. Each snapshot thus contains 
2400 observation vectors; each location produces a vector of 
readings at 9 depths. For ease of presentation, in all of our 
results the values shown here as well as those used in our 
numerical studies have been multiplied by 1000.  

 
Figure 2. Distributions of soil moisture observed at 3 randomly 
selected locations (out of 2400) at the depth closest to surface over 
the three-month simulation period. 
 

Figure 2 shows the soil moisture observed at 3 
randomly selected locations at the depth closest to surface 
over the three-month simulation period. The top panels of 
Figure 2 show the histograms of each location and their 
corresponding Gaussian kernel density estimates, 

respectively. The figures on the bottom panels are the 
estimated PDFs of each, respectively. It can be clearly seen 
that the data do not follow a Gaussian distribution; indeed in 
all three cases the data exhibit a multimodal behavior (here a 
mode refers to a local maximum in the density function). 
While only three locations are shown here, we note that this 
is a general observation drawn from all locations in our data 
analysis. While we may still choose to use sensor placement 
and field estimation methods that were derived based on the 
Gaussian assumption, they must be carefully evaluated using 
the soil moisture data since clearly the assumption itself does 
not hold. This observation also motivates us to ask the 
question as to whether there are other features embedded in 
the data that may be of use in constructing good sensor 
placement algorithms.  

The data suggest that there is a rather stable coarse-
grained ordering among the locations in terms of their 
relative soil moisture levels that could potentially be used in 
constructing good sensor placement algorithms using 
(greedy) global and cluster-based placement strategies.  
Suppose we divide the entire set of locations into M subsets 
each of size Ni, i=1,2,···,M , as described above. Also 
assume that we are interested in placing a total of S sensors 
(i.e., selecting S out of the possible 2400 locations), with Si 
allocated to the ith subset.  We will examine the following 
variations of cluster-based sensor placement schemes: 
(1) Clustered Random Placement, where the Si sensors in 
subset/cluster i are randomly selected out of the Ni locations. 
(2) Clustered Deterministic Placement, where the placement 
of Si sensors in the ith subset/cluster follows one of the 
deterministic algorithms mentioned earlier, including 
(MaxEN ,MaxMI and MinMSE), respectively. 

Figure 3 shows the comparison of results for 
cluster-based and global placement algorithms, for two 
different numbers of training data sets chosen from within 
the simulated data set.  
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Figure 3. Comparison between cluster-based and global placement 
schemes, using 1500 (top) and 1000 (bottom) training snapshots.  
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III. RECONCILING GROUND-BASED AND SATELLITE-DERIVED 

SOIL MOISTURE ESTIMATES: LANDSCAPE SIMULATOR 
(OBJECTIVE 2) 

 
An aspect of soil moisture estimation from satellite sensors 
that is rarely addressed is the fact that over the large (order 
of several km2) resolution cell of the satellite, the scene 
could be highly heterogeneous. There are two separate 
problems that need to be addressed in this regard: (1) how to 
sample the field temporally and spatially with in-situ sensors 
to obtain a representation of the true mean over such a large 
resolution cell, and (2) how to relate the scattering and 
emission properties of the components of the heterogeneous 
scene to the aggregate remote sensor measurements. The 
first problem was discussed under Objective 1, namely to 
design a ground network that will properly sample the soil 
moisture field in space and time to produce an accurate 
estimate of its true mean. The second problem is 
complementary and addresses the aggregation problem from 
the point of view of the satellite. The two values of the soil 
moisture field mean, one obtained from the satellite and the 
other from the ground sensors, must be compatible for the 
validation scenario to be successful. Regardless of the 
accuracy of the radar and radiometer retrieval algorithms, 
the mean value of soil moisture obtained from satellite data 
is not necessarily the same as the true mean as estimated 
from the ground sensors. Nearly without exception, current 
algorithms for geophysical parameter estimation in general 
and soil moisture in particular, assume a homogeneous scene 
within each satellite resolution cell, an assumption that is 
usually not valid.   

We address this problem by developing a full 
landscape simulator using existing in-house numerical radar 
scattering models that have been based on the work in [14]. 
Our model currently assumes a resolution cell that has 
homogeneous scattering properties, e.g., vegetation that is 
uniformly distributed over the pixel and soil moisture that is 
constant over that pixel. The model is capable of 
incorporating multiple canopy types within each pixel, and is 
also capable of incorporating a nonzero surface slope in each 
pixel. To develop the full landscape simulator in forward 
mode, we break down heterogeneous scenes into smaller 
sub-blocks to which the homogeneous assumption can be 
applied. The scattering model is applied to each sub-block 
according to given vegetation, topography, soil type, and 
moisture properties of that sub-block. Each simulation 
results in one value of the overall distribution. The total 
forward scattering measurement as taken by the satellite will 
be predicted by constructing multi-level aggregate blocks. 
Starting from the smallest sub-blocks, groups of 4, 16, 64, 
etc., sub-blocks will be averaged to investigate the scaling-
up properties of the scene (Figure 4), and therefore achieve 
an optimal strategy to form the value of satellite 
measurement from the coarse resolution cell. Both uniform 
and nonuniform sub-block aggregation can be considered.  

If the scene within one SMAP radar pixel were 
homogeneous, any of the existing retrieval algorithms could 
be applied to the aggregate backscattering coefficient 

measurements to obtain a mean value for soil moisture over 
that pixel.  However, since the scene is heterogeneous and 
the scattering process is nonlinear, the mean backscattering 
coefficient over the large pixel will not yield the correct 
value for the mean soil moisture within that pixel. To 
remedy this problem, we will develop a correlation data base 
for the aggregate values of scattering coefficients with 
respect to various scene properties, and derive location-
specific spatial disaggregation rules for different types of 
landscape. 

 

 
Figure 4. Landscape simulator will aggregate the homogeneous sub-
blocks (dark blue) into blocks of 4 (light green), 16 (dark green), 64, 
etc., to achieve a statistically representative mean value for the 
scene. Many input data layers will be used to produce the finest-
resolution simulated data. 
 

We have developed a proof-of-concept 
heterogeneous landscape simulator was to investigate these 
aggregation strategies. The landscape simulator is based on a 
unified multi-layered multi-species model adaptable to 
various landcover types [15]. A land cover classification 
scheme for the United States is readily available through the 
National Land Cover Database (NLCD) and a data base of 
input files for the unified model using these land cover types 
has been created. The different aggregation strategies can 
then be visualized in Google Earth where layers of 
information are co-registered on the whole Earth. Two 
example locations were considered: Marena, Oklahoma and 
Canton, Oklahoma. Marena is a rather homogeneous 
grassland area with sparse tree coverage surrounded by 
roads. The topography is smooth with a shallow valley 
running through the middle of the selected area. Canton is 
heterogeneous with land cover types ranging from deciduous 
forest, evergreen forest over grassland and crop to open 
space (concrete roads) and open water. Sample Google Earth 
images for these areas are shown in Figure 5.  

 
Figure 5. Canton and Marena, Oklahoma, are two study sites whose 
landscape data layers were created, coregistered, and ingested using 
Google Earth. 
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The architecture of the landscape simulator can be 
seen in Figure 6. The image processing software package 
PCI Geomatics is used to overlay different layers of 
landscape input information and to co-register them. With 
the Engineering Analysis and Scientific Interface (EASI) 
meta-language, the data can be handled and the information 
about the land cover type can be extracted and saved in text 
files. The parameter input files have been prepared based on 
the land cover types available in NLCD 2001. The text files 
containing the land cover type specification and the 
parameter input files are then used by the multispecies 
vegetation scattering model, which is coded in FORTRAN. 
It outputs the backscatter cross section of each NLCD pixel 
in a text file. This text file is then read in to Matlab to 
investigate and visualize different aggregation types: blocks 
of 4, 16, 64, etc. can be formed to achieve a statistically 
representative mean value for the backscattering cross 
section of the scene, up to the resolution cell size of SMAP. 
The resulting text file is read into PCI Geomatics where the 
data can be co-registered and visualized. The layers can also 
be exported to Google Earth for visualization. 

 
Figure 6. Architecture of Landscape simulator 

 
 

First results of aggregation strategies have been 
investigated. Figure 7 shows the actual backscatter 
coefficient simulated for each 30m pixel. The second row in 
Figure 7 shows the backscattering coefficient with the 
aggregation strategy of amalgamating 16 pixels into one 
block. A more realistic case is shown in the bottom row of 
Figure 7 where a single block represents the whole scene as 
would be measured by a satellite sensor such as the SMAP 
radar. The 2km aggregated radar backscattering coefficient 
values are seen to have significantly less information than 
the finer-scale images. 

 

 

 
Figure 7. L-band HH backscatter coefficient (dB); blocks containing 
averages of 1 x 1 (1st row), 4 x 4 (2nd row row), and all pixels (3rd row). 

 
IV. WIRELESS COMMUNICATION AND ACTUATION SYSTEM 

(OBJECTIVE 3) 
 
 To achieve the objective of collecting surface-to-
depth soil profiles at distributed locations, we need a 
network consisting of soil-moisture probes as well as ground 
wireless transceiver modules (referred to below as nodes or 
sensor nodes) that actuate and control the sensor probes and 
send collected data back to a base station.  These devices are 
to be deployed in the field and are expected to operate for 
long periods of time (on the order of at least months) without 
direct human intervention.  In this section we present 
Ripple-1, the ground wireless sensor node we designed for 
this project, as well as a ZigBee based wireless 
communication network we designed using Ripple-1. 
 Our system shares some of the obvious and 
common requirements as many other systems.  These 
include long lifetime, high reliability, ease in deployment 
and maintenance, ability to support multi-hop 
communication, scalability, and relatively long-range 
wireless communication. Long-range for our application 
means distances on the order of 100s of meters to a mile, as 
we need to cover a sufficiently large area to be able to 
observe spatial variability in soil moisture.    
 In addition, our system has the following 
distinguishing features.  Firstly, in terms of data flow, it 
operates in a “data pull” mode rather than a “data push” 
mode, since the measurement decision is made at the base 
station using antecedent data and a priori statistical 
information.  This makes many data push (or clock-driven or 
event-driven data collection) paradigms [16] unsuitable.  
Our sensor nodes need to be highly responsive to base 
station commands.  Secondly, our system potentially has a 
very wide range of sampling and data rates, sampling from 
once per minute to once per hour or 10s of hours depending 
on exogenous weather conditions and antecedent moisture 
values.  Both of these features make duty cycling 
mechanisms very challenging to design.  
 Finally, we want to have a low-cost design and a 
relatively easy-to-maintain system.  Some of the more 
specific requirements include: large network size (more than 
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30 nodes) and extendibility; low cost (< $100 per node) and 
small form; up to eight sensor channels on each node to 
enable measurement of soil moisture at multiple depths, as 
well as temperature, precipitation, or other environmental 
variables; and the ability to work in extreme temperature 
environments.  
The requirements listed in the preceding three paragraphs 
rule out most (if not all) of existing sensor platforms 
available on the market.  These include MICA2 [17], TelosB 
[18], BTnode [19], and Fleck 3 (CSIRO ICT Centre), to 
name a few, which, in particular, do not meet the 
requirement for long-range operation.  We used the Narada 
[20] sensing and actuation boards in the early phase of this 
project and collected some initial results. However, it was 
found to be too energy-consuming for our scenario, with 
insufficient communication range. 

Figure 8 shows the architecture of a Ripple-1 
system. At the network level, the system consists of a 
number of sensor nodes deployed over a target field, a base 
station that performs data collection and sensing control, 
also deployed in the field, and an off-field database used to 
store data that also allows remote data access, e.g., from 
office/home or on the move.  At each sensing site (where a 
sensor node is placed), a number (3-5) of moisture probes 
are also deployed vertically underground with wire 
connection to the sensor node on the ground.  This forms the 
configuration of a single sensor location. 

A web site (hosted on a server on the U. Michigan 
campus) has been developed to provide an interface for users 
to access and visualize collected data, and to override 
scheduling algorithms run on the base station.  The 
connection between the base station, the database and the 
web server is through a 3G Internet card installed on the 
base station.  Thus any device with Internet access, including 
PCs and smart phones can browse the web server and access 
data and control. 

 

 

 

 

Figure 8.  Ripple-1 system architecture 
 
In searching for a low-power, low-cost, reliable, and multi-
hop solution, we converged on the ZigBee technology [21]. 
Currently, ZigBee is the only standards-based technology on 
the market that targets low-cost and low-power networking 
applications (e.g., home networks).  It is built on the IEEE 
802.15.4 standard that specifies the physical (PHY) and 
media access control (MAC) layers.  Specifically, ZigBee 
specifies the network, security, and application layers, and 
defines three types of logic devices:  
• Coordinator: this is the most capable device that 

establishes the network and assists in routing data. A 
single network only has one coordinator.  

• Router: it supports data routing and can talk to the 
coordinator, end devices, and other routers. 

• End device: it has just enough functionality to talk to its 
parent node (either the coordinator or a router).  

The topology of a typical ZigBee network can be a star, 
mesh or cluster tree (also called star-mesh hybrid). Our 
field-deployed network is shown in Figure 9; it consists of a 
single coordinator/base station, 2 router nodes and 11 end 
devices.  
 

 
Figure 9.  ZigBee mesh topology  

 
Having identified ZigBee as the network solution, we 
surveyed currently available chips for building our sensor 
node.  Among these we decided that the XBee PRO ZB 
module by Digi International [22] is a good candidate that 
has relatively long battery life, is reliable, low-cost, and 
industry-standard. To provide superior communication range 
(up to 1 mile), the XBee PRO ZB module is equipped with a 
built-in low noise amplifier and a power amplifier. An Xbee 
PRO ZB module with different firmware versions can act as 
one of the three logic device types in a ZigBee network.  

The final version of the Ripple-1 node, including a 
weather-proof enclosure, is shown in Figure 10. This module 
is field-deployable and has been tested and used in initial 
demonstrations of our sensor web technology.  
 
 

 
Figure 10. Ripple-1 node with weather-proof enclosure 
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Figure 11. Aerial view of field validation site at the University of 
Michigan (UM) Matthaei Botanical Gardens.  

 
 

V. FIELD EXPERIMENTS 
 

The Ripple-1 nodes have been fully tested and 
verified in the laboratory as well as in the field. The sensor 
scheduling problem has also been tested in simulations and 
using field data [23], [24]. Thirty Ripple-1 nodes have been 
deployed and tested at the University of Michigan Matthaei 
Botanical Gardens, as shown in Figure 11. Our next field 
validation goals are (1) to validate the sensor placement 
scheme at the same location (for which we have already 
validated sensor scheduling policies during a precious AIST 
project), and (2) develop and test the placement and joint 
placement-scheduling algorithms at a larger, more 
representative, environment. 

As part of the preparatory calibration and validation 
work, the SMAP project is deploying a network of ground 
sensors in Marena, OK, this spring and summer. The 
deployment aims to answer the following questions: 

• How do different sensors perform given the same 
hydrologic inputs of rainfall and evaporation? 

• How can the measurements from different sensors 
with different sampling scales particularly the 
COSMOS and GPS systems of soil moisture 
monitoring, compare given the variation in scale of 
measurement? 

• How do different sampling intervals impact the soil 
moisture estimates, given instantaneous 
measurements versus time averaged measurements? 

• How can networks which measure soil moisture by 
different fundamental methods, capacitance, FDR, 
TDR, reflectometry, be compared to a standard of 
gravimetric validation? 

• How do the orientations of installation influence the 
data record and effectiveness of the sensor? 

 
The Marena location is managed by the Oklahoma State 
University Range Research Management Station and 
contains one of the stations of the Oklahoma Mesonet, 

which has a long term lease. It is a grazed cattle pasture. The 
soil is sandy clay loam/loam. There is a fence bisecting the 
field and some terracing to prevent erosion. Sections of the 
field are burned for weed control every three years with the 
next scheduled burn to take place in 2012. There is a small 
amount of topography.  

The SMAP deployment plans to install and cross-
compare eight different in-situ sensor types, and is not 
primarily concerned with the effects of landscape 
heterogeneity. Our project, on the other hand, has as a main 
focus the impact of landscape heterogeneity on in-situ 
network design. Therefore, the two efforts are highly 
complementary. We therefore plan to deploy the first version 
of our designed network concurrently with the SMAP team.  

Since the Marena, OK, site is not very 
heterogeneous, nor has much topography, we plan to deploy 
a network at a nearby site, in Canton, OK. This site has 
sufficient landscape variability and topography to allow 
proper testing of our adaptive network placement and 
scheduling designs. The two sites are within about 100 miles 
of each other. Prior to the field installation at either of these 
sites, we plan to acquire as much information as possible 
about the landcover, weather patterns, and hydrology of the 
areas, which we plan to use in new tRIBS simulations. 
Having the results of the tRIBS simulations will allow us to 
derive appropriate placement and scheduling designs before 
prior to field installations. Even though we plan to deploy a 
denser network than required by our placement solution (to 
make sure validation data are available), having the prior 
design will help with economizing the dense network 
deployment. 

VI. CONCLUSIONS 
 

We are developing technologies for the long-standing 
problem of validation of large-footprint satellite-derived 
estimates of soil moisture, with specific application to the 
SMAP mission. We develop the spatial placement design, 
wireless communication system, and dynamic operation 
policies for soil moisture in-situ sensors that provide 
estimates that are near-real-time, autonomously operated, 
and are compatible with SMAP data products. The sensors 
communicate with a central coordinator and actuate 
measurements only when their measurement significantly 
adds value to the across-network computation of the field 
mean. The principal technology innovations that make this 
possible are: 

• optimal design of sensor node placement  and 
scheduling based on modeled soil moisture spatial 
statistics 

• strategies for deriving large-scale space-based 
estimates of heterogeneous soil moisture that are 
compatible with ground-based estimates of true 
mean of soil moisture fields  

• telecommunication protocols and actuation systems 
that configure the sampling within the network to 
yield large-scale field mean conditions.  

In the first year of this project, we have made advances in all 
of the above areas to the point that we are ready to test the 
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first full version of the wireless network based on the results 
of our analysis and hardware development, in a relevant 
field environment. In the first year, the technology readiness 
level (TRL) has been advanced to 3. 
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