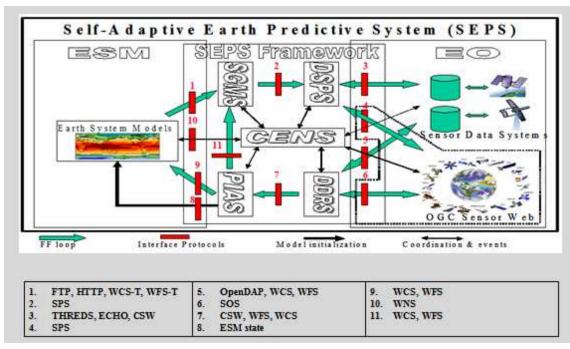


Support of Asynchrony in Sensor Web

Liping Di, Genong (Eugene) Yu, Nengcheng Chen, Min Min, and Huilin Wang

Center for Spatial Information Science and Systems George Mason University

07/13/2007


Outline

- Asynchrony
- Asynchronous technologies
 - Standards & specifications
 - Geospatial
- Asynchrony for Sensor Web
 - CENS
- Case studies
 - Order-based
 - OWS-5
- Conclusions

- Asynchrony
- "A sensor web is a group of interoperable web services which all comply with a specific set of sensor behaviors and interfaces specifications" – Liping Di

Overall architecture of the SEPS (Di 2007)

Center for Spatial Information Science and Systems Page 3

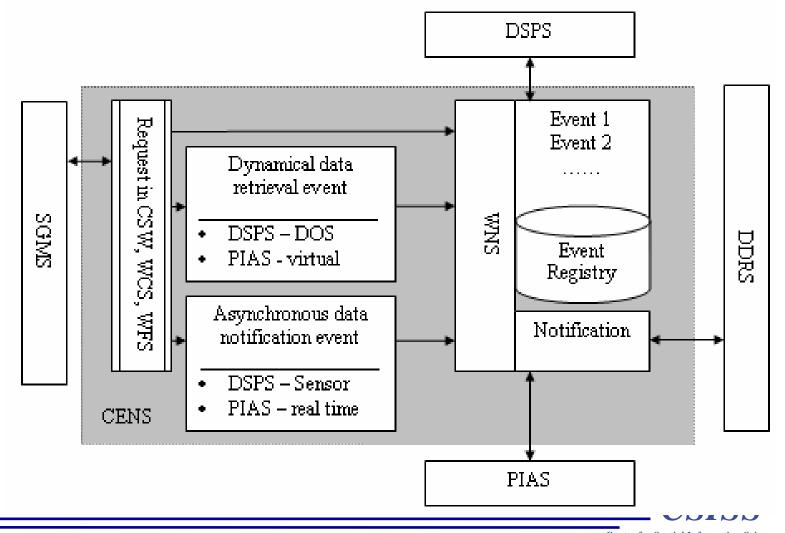
Requirements of asynchrony in Sensor Web

- Observations
 - Future
- Sensors
 - Hibernation
- Virtual sensors
 - Processing

- Asynchrony at the transport level
- Standards/protocols
- Web Service
- REST

Asynchrony Patterns

- Asynchronies
 - client-side
 - Non-blocking API
 - Transport level
 - server-side
 - WS-Addressing
- Client asynchrony patterns
 - Callback pattern
 - Publish/subscribe pattern
 - Polling pattern
 - Callback Factory Pattern
 - Publish/Subscribe Factory Pattern
- Callback pattern
 - free the client from heavy network traffic of polling between client proxy and server
 - the most widely supported pattern by industrial protocols
 - RossettaNet, xCBL, ebXML, IHE, and OGSA
 - ASAP supports Callback factory pattern only
 - WS-Addressing for SOAP
 - Publish/subscribe pattern by ebXML and OGSA
 - Extensible Messaging and Presence Protocol (XMPP)



Asynchrony in Geospatial Web Services

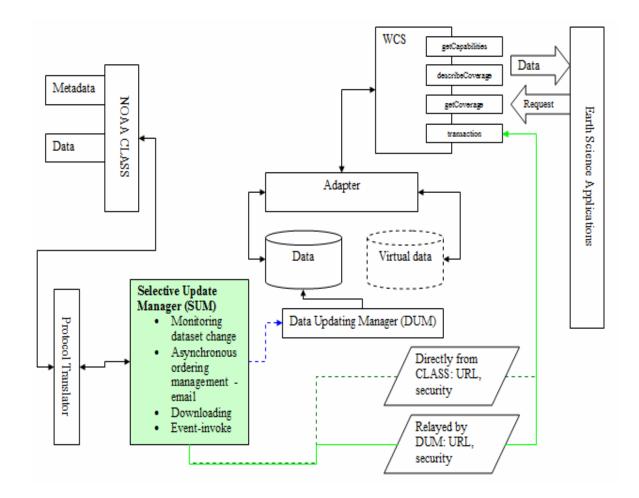
- OGC SWE
 - Observations & Measurements (O&M)
 - Sensor Model Language (SensorML)
 - Tranducer Model Language (TransducerML)
 - Sensor Observations Service (SOS)
 - Sensor Planning Service (SPS)
 - Sensor Alert Service (SAS)
 - Web Notification Service (WNS)
- Asynchrony
 - Specifications: SAS and WNS
 - SAS
 - XMPP channel publication (from provider) and subscription (from client)
 - WNS
 - alerts/notifications from SAS and SPS

CENTERS CENTER FOR Spatial Information Science and Systems Page 7

CENS (2)

- Core specifications
 - WNS
 - SAS
- Message notification approach
 - to keep the final processes synchronized to complete complicated and/or lengthy geospatial processing workflows
 - multiple transport protocols, e.g. HTTP, email, telephone, and fax
 - Coodinae other modules of Self-Adaptive Earth Predictive Systems (SEPS)
 - Data Preprocessing, Integration, and Assimilation Services (PIAS)
 - Data Discovery and Retrieval Services (DDRS)
 - Data and Sensor Planning Services (DSPS)

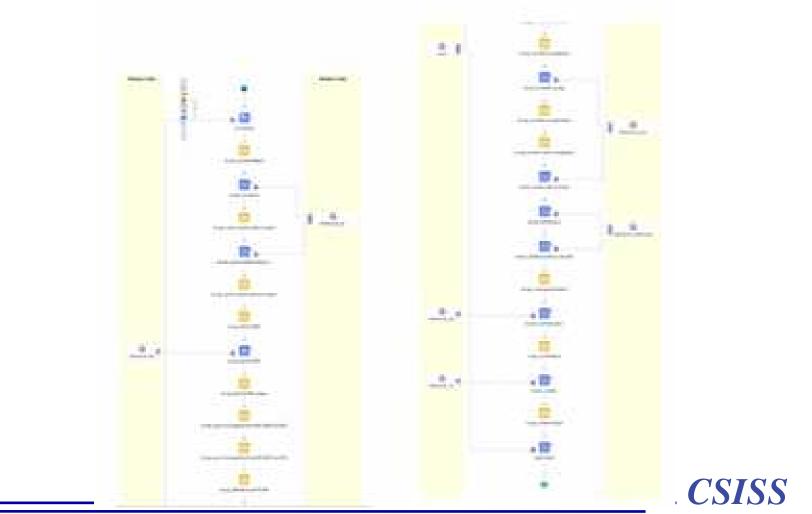
- BPEL
 - Orchestration
- WS-Addressing
 - SOAP message callback pattern
 - Correlation through unique message identification



- Asynchronous access to data order system
 - Email notification
 - Quarterly and hours

Architecture

CSISS Center for Spatial Information Science and Systems Page 12


- Workflow steps
 - planning request to the SPS
 - User as actor
 - email notification
 - Retrieve observation from the SOS
 - Feed the observations into the JPIP server through secured transaction
 - Add the data along with description into WCS through transaction
 - Alert the data availability through SAS to all subscribed users

Geo-referencing workflow

- Two types of asynchronies
 - The first step of SPS based on WNS
 - WS-Addressing
 - Callback pattern
 - The final notification of data availability to all subscribed users through SAS
 - XMPP
 - Publish/subscribe pattern

- The asynchronous support in the SEPS
 - CENS a general framework for relaying message
 - BPEL a standard script language for workflow
 - BPELPower engine OGC-specification aware
- Successful applications in two scenarios
 - Order-based system
 - Message-notification
- Findings
 - Inevitability of asynchrony in Sensor Web, due to future observation planning and long processing time
 - Intuitively, proper use of asynchrony reduce the network traffic

- Further development and refinement of CENS
- Quantitative evaluation of performance

- This study is funded by NASA grant AIST-05-0064 (PI: Dr. Liping Di, Co-I: Dr. James Smith, and Dr. David Lary)
- For the OWS-5 demonstration case, many helps had been received from many parties, including Mr. Shayne Urbanowski, Mr. Alexandre Robin, Mr. Peter Giacovelli, Mr. Steven Keens, Mr. Johannes Echterhoff, Mr. Max Martinez, Dr. Arne Broering, Dr. Peisheng Zhao, Dr. Yaxing Wei, and Dr. Weiguo Han.

