Using Fabry-Perot Interferometer Imagery From Space for the Measurement of Clouds and Trace Gases

N426NA

Jeng-Hwa (Sam) Yee, F. Morgan, J. Boldt, R. DeMajistre, W. Swartz, JHU/APL W. R. Skinner, UM/SPRL M. Pitts and C. Hostetler, NASA LaRC

ESTO-2008 University of Maryland Conference Center June 24, 2008, Paper B4P1

Geostationary Imaging Fabry-Perot Spectrometer (GIFS)

- Geostationary Imaging Fabry-Perot Spectrometer is specially designed to provide high spectral resolution 2-D images of atmospheric absorption line measurements from GEO. This imager, uses a tunable triple etalon optical system and has following unique features:

- * high spectral resolution
- * high out-of-band rejection
- * spectral tunability
- * spatial imaging capability

Solar Backscatter Spectra

Sensitivities of O₂ Absorption Line Shapes

Triple-etalon FPI Transmission and Spectral Tuning

A Triple-Etalon Scanning Fabry-Perot Imager

GIFS Prototype Instrument Specifications

Instrument Parameter	Specification	
Operating Wavelength	689.6 (vacuum) 689.4 (air)	
Field of View of Instrument	3.60 ⁰	
Full Angle Through Etalons	1.90 ⁰	
Detector Format	512 x 512 N426NA	
Pixel Size of Detector	16 μm	
Divergence through Etalons	65μ rad / pixel	
CCD Binning	1 x 1 and programmable	
Filter Clear Aperture	2.618 cm (~1")	
Filter Effective Refractive Index	1.89	
Collection Altitude	30,000 ft.	
Spatial Resolution (w/ 4 x 4 binning)	4.49 m/bin	
Full imaged scene	0.33 km ²	
F/# of Imaging System	4.9	
Required signal at CCD	>20,000 e-/binned pixel	
Filter Bandwidth (FWHM)	≤ 8 cm ⁻¹ (or 0.38 nm)	

GIFS Prototype Etalon Specifications

Common Specifications	Value	
Clear Aperture	5.0 cm	
Reflectivity	85 ± 2%	
Coating Wavelength	600-700 nm	
Plate Flatness	λ/150 @ 633 nm <i>N426</i>	
Finesse	>15	
Spectral Step Resolution	<0.015 cm ⁻¹	
Gap Step Resolution	Step Resolution <0.5 nm	
Dynamic Range	3-5 μm	
Tolerance on Gap Spacing	± 0.002 cm	
Repeatability	< 3 X 10 ⁻³ cm ⁻¹	
	And the Party of the Andrew States of the States	

	HRE	MRE	LRE
FSR	1.5 cm ⁻¹	3.32 cm ⁻¹	7.102 cm ⁻¹
Gap Spacing	0.333	0.1506 cm	0.0704 cm
# Orders Imaged	1.33	0.602	0.282

GIFS Prototype Overview

GIFS Prototype Optical Bench

GIFS in Chamber

Tuning Capability Demonstration

Instrument Transmission . 2.0•10⁷ 10⁸ 10⁷ 1.5•10⁷ 10⁶ ເສັ ເອີ້ນ 1.0•10⁷ ເທ Signal 10⁵ 5.0•10⁶ 104 0 10³ 1.0 1.5 Wavenumber (cm⁻¹) 0.5 2.0 2.5 0.0 0.0 0.5 1.0 1.5 Wavenumber (cm⁻¹) 2.0 2.5

 $FSR = 1.5 \text{ cm}^{-1}$ $\Delta \lambda = 0.105 \text{ cm}^{-1}$ Finesse = $c_1 \frac{14}{3}$

GIFS P3-Flight Experiments

• GIFS conducted its engineering test flight onboard NASA P3 on 1/30/08 and five science flights afterward through 2/14/08.

GIFS Onboard NASA P3B

GIFS Image Spectral Scanning

GIFS Flight Coincidence with Langley HSRL Airborne Lidar + CALIPSO

LaRC aircraft, as viewed from P3B, below.

GIFS Measurement Assessment

GIFS: Water Mixing Ratio Measurements

Measurement Uncertainties (top:800 mb, bottom:900 mb) at 4.4 km resolution

	Cloud optical depth	Optical depth uncertainty	Cloud top pressure uncertainty (mb)	Cloud height uncertainty (m)
	1.11	0.009	24	240 N426NA
0	a • 5	0.08	12	126
	50	6	8	85

Reasurement Uncertainties (top: 500 mb, bottom: 600 mb)

at 4.4 km resolution

Optical	Cloud top	Cloud top
depth	pressure	height
uncertainty	uncertainty (mb)	Uncertainty (m)
0.006	15	220
0.06	8	116
4	5	79
	Optical depth uncertainty 0.006 0.06 4	Optical depth uncertaintyCloud top pressure uncertainty (mb)0.006150.06845

GIFS CO Spectral Scanning (NIR)

Summary

- A 2-D spectral images of atmospheric absorption lines can be obtained by a tunable Fabry-Perot imager
- This tunable triple-etalon Fabry-Perot Imager is ideal for atmospheric sensing from GEO
 N426NA
- An airborne prototype was constructed and successfully demonstrated on NASA P3
- Preliminary analyses validate GIFS measurement technique and sensing concepts

Cloud height

- Tropospheric water vapor
- This type of instrument and sensing concept can be applied to other tropospheric trace gases measurements in the IR, i.e. CO, H₂O, CH₄, N₂O, etc.

GIFS Measurement Assessment

Triple-Etalon FPI Transmission Function

GIFS CO Spatial Scanning & Uncertainty

Spectral Sensitivities

GIFS Interferometer Layout

Application of GIFS Technique: CO Calculated Daytime Upwelling Radiance

LaRC HSRL 20080201 Flight

LaRC aircraft, as viewed from P3B, below.

High Spectral Resolution Sensing Technique

- Line wings influenced by scene brightness without atmospheric absorption
- Line width is a proxy for average path pressure and total column density of the absorber of interest along the optical (scattering) path
- Line depth related to total optical depth of the absorber and where the absorption occurs

Width and depth are closely related

- The GIFS remote sensing technique takes advantage of the absorption width, pressure broadening (and shift if useful) information embedded in the absorption line shapes to better determine the low-altitude atmospheric properties, including trace gases (i.e. CO_2 , CO, H_2O), column amounts and cloud properties.
- Potential applications:
 - CO₂ mixing ratio for study its sources and Sinks
 - Regional pollution monitoring: (e.g. CO)
 - Cloud property monitoring: cloud top pressure, cloud optical depth, and cloud fraction.

Synchronized Cloud Imagery 20080207 Flight

