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Introduction

• RFI can cause significant errors in science data

– L- and C-Band soil moisture measurements over land

– L-, C- and X-band ocean measurements

• High levels of RFI are relatively easy to detect

– Mitigate using analog parallel subband filter approach

• Low levels of RFI present more difficulty

– Low integrated energy looks like science signal

– High-power, short-duration  low integrated energy

– Many sources (e.g. air-traffic control radars) match this profile

• Digital signal processing approach

– Based on statistical properties of natural emission vs. man-made

interference
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Project Objectives

• Technical Objectives

– Design, develop and field test candidate RFI mitigation detectors

– Develop RFI mitigation algorithms and characterize their

performance

• Empirical field testing

• Analytical performance models

– Develop a space qualified candidate point design

• Technology Infusion

– Integrate RFI mitigation detectors with established ground based

and airborne microwave radiometers

– Demonstrate capabilities to the science community
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Progress of Technology Infusion

• Spaceflight Opportunities

– SMAP mission (recommended by NRC Earth Science Decadal Survey)

has included the ADD subsystem in their baseline design

– IPO NPOESS MIS radiometer design studies include versions of ADD in

their trade space

• National Radio Astronomy Observatory

– Frequency Agile Solar Radiotelesope (FASR) national facility includes

ADD RFI detection and mitigation subsystem in its baseline design
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Project Schedule

• Year 1 (7/05-6/06)

– Prototype RFI Detector development

– Ground based & airborne campaigns

• Year 2 (7/06-6/07)

– Campaign data analysis

– Define space flight detector requirements

• Year 3 (7/07-6/08)

– Advanced detection and mitigation algorithm development

– Spaceflight detector brassboard development

• Follow On

– Working with SMAP and MIS Programs
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• Desired radiometric (science) signals generated by thermal

noise

– Amplitude of electric field has a gaussian (bell-curve) probability

density function (PDF)

• RFI is man-made

– PDFs will often be non-Gaussian

• Exploiting this distinction is the basis of the Agile Digital

Detector (ADD)

Theory of Operation
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Thermal Noise Amplitude Probability Distribution

Thermal

waveform Sinusoidal
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Gaussian

PDF
Non-Gaussian 

PDF



Ruf et al., ADD RFI, ESTC 2008 8

Outdoor Sky Cal with sinusoidal RFI

8 Subband Probability Density Functions

• TB = 40 K plus ~260 K sine wave injected into subband 5
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RFI Detection Using Higher Order Moments

• The kurtosis of a random variable, x, is defined as

• k=3 for a gaussian distributed r.v., independent of x
2

(i.e. k=3 for natural thermal noise, independent of brightness temperature)

• The standard deviation of an estimate of k after a finite integration
time is

• For prototype radiometer operation (B=3 MHz & =0.3 s), k = 0.005

• RFI Detection Flag if |k – 3| > 3 k
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C-Band Field Deployment – with NOAA/ETL PSR

• Operated on WB-57 over Texas, 25 August 2005



Ruf et al., ADD RFI, ESTC 2008 11

Example of PSR Flight Data

Kurtosis and 2nd Moment Spectra

• Kurtosis (left) and 2nd moment
(below) 5.5-7.5 GHz spectra v.
time over Dallas Metro area

• ch = 50-80 (~6 GHz), intermittent times

– Strong non-gaussian kurtosis

– Strong, correlated effect on TB

• ch = 170-180 (~7.5 GHz), t = 0-60s

– Strong non-gaussian kurtosis

– Not so noticeable effect on TB
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Radiometer Brightness Temperature

and Kurtosis Images

• Overflight of Galveston, TX coastline

– TB image (left) sensitive to both natural and artificial emission
(artificial emission, coastline and islands all affect TB)

– Kurtosis image (right) only sensitive to artificial emission

Kurtosis ImageBrightness Temperature Image
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Kurtosis Algorithm Detection Concepts

Rth,a
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False Alarm Rate and Probability of Detection

 of Pulsed Sinusoidal RFI

• For RFI power level at
brightness temperature
equivalent to 2NE T,
detection threshold can be
set to give:

– 90% probability of
detection

– 3% false alarm rate

• 0.1% duty cycle case
corresponds to ARSR-1
operating mode

• Higher duty cycle reduces
detection

TPS = 2.2 NE T

TPS = 0.55 NE T

TPS = 0.14 NE T

d = 0.1%
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False Alarm Rate and Probability of Detection

 of Pulsed Sinusoidal RFI

• Plot comparing the ROC area for the kurtosis algorithm under various
data rates schemes and subbands with the matched peak detection
algorithm (blue *) (RFI power = 0.5NEDT)
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Development of ADD Flight Brassboard
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ADD Brassboard Requirements

• Two Channel, V and H polarization

•  Input (from RF front end)

– 1401.75 to 1425.75 MHz band limited (24MHz BW)

– (-10 dBm) signal amplitude

• Use ADC to

– downconvert the RF input

– Sample at Nyquist rate for subsequent digital filters

• Signal Processing

– 1st, 2nd, 3rd, and 4th moments for V and H (full BW) and each of 16 subbands

– 16 equally spaced subband filters (24MHz/16 = 1.5MHz each)

– Complex correlation of full BW and each of 16 subbands:

• Real <Iv*Ih> + <Qv*Qh>

• Imag <Iv*Qh> - <Qv*Ih>



Ruf et al., ADD RFI, ESTC 2008 18

ADD Brassboard Objectives

• Purpose

– Test and characterize ADC and FPGA digital signal processing.

• System SNR, with analog radiometer data as benchmark

• Power requirements

• Mass and physical configuration estimates.

– Establish requirements

• ADC clock rate

• ADC clock jitter specification

• Power regulation and noise limits, for ADC in particular.

• Design

– Brassboard parts to be functionally equivalent to space qualified parts.

– Circuit board layout is critical at high frequency.  Successful layout to be

duplicated in flight design.
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Brassboard Block Diagram
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Conclusions

• Direct measurement of higher order moments (1st, 2nd, 3rd and 4th)

can be used to reliably detect non-gaussian RFI

• The signal kurtosis is a very robust statistic on which to base a

detection algorithm

• Digital subbanding allows RFI to be removed

• Experimental verification demonstrates performance in a relevant

science application environment

• In design trade space for two pending spaceborne radiometer

programs

• Flight brassboard testing planned for Summer 2008


