Pathfinder Advanced Radar Ice Sounder :PARIS

ESTO-2008

R. Keith Raney, C. Leuschen*, and M. Jose

Johns Hopkins University APL 25 June 2008

The Johns Hopkins University APPLIED PHYSICS LABORATORY

*University of Kansas

PARIS: Pathfinder Advanced Radar Ice Sounder

2007 Mission to Greenland

The Way Forward

Objective

Develop techniques to enable and/or to enhance the visibility of internal layering and bottom topography of (*continental*) ice sheets when probed (*sounded*) by a high-altitude radar (*from aircraft or spacecraft*)

Perspective

The Major Challenges: Clutter; Weak SignalsClutter dimensions:Along-track suppressionAcross-track suppression

Weak signal mitigation: Innovative radar design large dynamic range, very low side-lobes, extreme linearity, generous power

NASA-IIP-supported proof-of-concept system: PARIS

150 MHz (vision: Antarctica; planetary prototype) High altitude (first successful demonstration, P-3 aircraft)

ESTO-ESTC, June 2008

Prototype for PARIS: D2P radar altimeter (previous NASA IIP project)

PARIS: Pathfinder Advanced Radar Ice Sounder

Along-track clutter suppression Delay-Doppler processing Radar design: key features

2007 Mission to Greenland

The Way Forward

Along-Track Clutter Suppression: Partially-Coherent Doppler

- Transmit "high" PRF (> Nyquist rate) to unambiguously retain **Doppler spectrum**)
- (A) Reflections from nadir will be at zero-Doppler
- (B) Off-nadir clutter reflections will have |larger| Doppler frequencies
- Filter data in the Doppler domain to favor reflections from layers and depth, and to suppress clutter

Along-Track Clutter Suppression: Doppler

Delay-Doppler Technique Spacecraft altimeter example

In situ sounding: dielectrics of ice differ from air => different velocity of propagation and Doppler scaling in ice. APL

Benefits of partially-coherent Doppler processing

Radar sounder architecture (minimize RF operations)

Design: isolate aliased (under-sampled) signals

PARIS: Pathfinder Advanced Radar Ice Sounder

Along-track clutter suppression Delay-Doppler processing Radar design: key features

2007 Mission to Greenland Quick-time and initial results

The Way Forward

PARIS on the NASA P-3

 Univ. of Kansas' CRESIS antennas (shared with PARIS)

ESTO-ESTC, June 2008 APL

PARIS: Inside the P-3

PARIS-I Radar in Operation

📕 Applet Viewer: ParisV2.class 🧐							. 🗆 🗴
Applet							
Chirp VGAs Combined VGAs Histogram	Config Main Confi	g VGA Cor	nfig T/R Ra	inging Statu	s Statu	5	
With Combined 15 000	Parameter	Hex	Decimal	Enginee	rina	Entry	Send
VGAS Committee 15000	chirp_period	0×2089	8329	124,935	U 5		Send
/	chirp_rate	0×2069	8329	8004	Hz		Send
	osk_start	0x0210	528	7,920	115		10
	pulse_width			29,995	us -		Send.
Geita(dB)	sample_start_time	0x0AF0	2800	42,000	\$15		Send
	sample_count	0x0348	840	63,000	115		Send
	DAC1_data	0x0870	135*16	+10.00	dB		Send
	DAC1_Hait_Bax	0x01	1	1,275	JUS .		Send
15.000	DAC1_Wait_inc	0×7F	127				Send
5 103 km Banav 14 537 km	DAC1_min_time	0×10A8	4267	64.005	us		Send
	DAC1_Rax_time	0×1CA5	7333	109,995	µ5		. Send.
Acquired Data 4136	DAC1_ranp_rate		-	1,556	dB/µs		
	DACZ_data_I	030980	155*16	+5.00	dB		Send
and the filler	DAC2_time	0x1CA5	7333	109.995	μs		Send
	DAC2_GBTR_2	0x0980	155*16	-5,00	48		Send
Log	Data Recording		Enable	Disable	1		
	Auto Ranging (VGAN T	R.ND	Enable	Disable			
5.103 km Max @ Range 5.676 km 16.604 km 5.1 km	Extra Register Configuration Setup Sample Window Width Signal Averaging (32) Committing Mode	00000	ptions > ptions > ptions > ptions >	Config OK			
	T/R Switch Set	-	TX On	TX Off	Def	ealte	
CARDING STREET, SALES AND DESCRIPTION OF THE OWNER.	Power Display		Log	Linear	Lei		
2	Waterfall Display Rate	0	ptions 🕨				
14.5 km	Waterfall Look Up Table	0	ptions 🕨				
monthal stratted							_
ppier starteu.							
		TO	1	- 20	00	A	۲

ESTO-ESTC, June 2008

Arctic '07 Mission Tracks

- PARIS shared the NASA P-3 w/ Airborne Topographic Mapper (ATM)
- PARIS operated during ATM (low-altitude) flights
- 925 GB of PARIS data collected over 10 days
- High altitude data acquired 04 and 07 May

Raw Data 07 May 2007 14:10:45-14:16:00

(sub-sample – first four seconds)

Delay-Doppler (partially-coherent) Sounding

ESTO-ESTC, June 2008

PARIS: Pathfinder Advanced Radar Ice Sounder

Background Along-track clutter suppression Radar design: key features

2007 Mission to Greenland Quick-time and initial results

The Way Forward

Refine along-track processing algorithm Cross-track clutter suppression Conclusions

Cross-Track Clutter Suppression: Polarization (*new concept*)

Why Transmit Circular Polarization?

- Single-bounce (specular) reflection always reverses the sense of the illuminating (circular) polarity
- (Linear polarization sense-reversal is not observable)
- > Most reflections from nadir (and from depth) will be specular => opposite sense circularly polarized
- > Specular reflections => high coherence (~ degree of polarization)
- > Reflections from clutter almost always will have different polarization properties

Dual Hybrid-Polarity Radar Sounder

On Polarimetric Parameters • Stokes parameters fully characterize the received EM **field** => *innovation for radar sounder data* Stokes parameters support parametric discrimination *e.g.:* > Measurement of relative $(E_X :: E_Y)$ phase δ > Degree of polarization *m* **Hybrid Polarity** $S_1 = \langle |E_X|^2 + |E_Y|^2 \rangle + 2N_0$ $m = (S_2^2 + S_3^2 + S_4^2)^{\frac{1}{2}} / S_1$ $S_2 = \langle |E_x|^2 - |E_y|^2 \rangle$ $S_3 = 2 \text{ Re} < E_X E_Y >$ $\delta = \arctan(S_4 / S_3)$ $S_4 = -2 \text{ Im} < E_x E_v >$

ESTO-ESTC, June 2008

Clutter vs Signal in m-delta Feature Space

Transmit left-circular polarization (Example: Real non-ice data)

Hypothesis: Desired depth signals will differ from clutter in a decomposition feature space. Selective filtering in a polarimetric feature space can enhance depth returns, and suppress clutter

ESTO-ESTC. June 2008

Clutter Suppression Issues (Recap)

A good sounder => a "clean" radar: dynamic range, linearity, extreme side-lobe control, etc

Doppler (along-track): Well established

Proven technique (PARIS, Marsis, etc.) Ground processing Optimal performance => must match ice index of refraction

Polarization (across-track): New strategy Developmental technique: requires proof-of-concept Ground processing Optimal performance may imply adaptive selectivity in response to clutter and depth polarization signatures

Conceptual Flow of Clutter Suppression

Comments on hybrid-polarity

- Hybrid-polarity is a proven methodology for (*compact*) polarimetric SAR (*classification by matrix decomposition*)
- The cross-track polarimetric method is fully compatible with along-track enhancement techniques (*Doppler and/or polarimetric*) for a radar sounder
- Sidelobes from the surface return can be suppressed if their polarimetric signature differs from depth signals
- The same technique could help to suppress the triplebounce reflection of the aircraft (*ideal for a UAV or airborne radar sounder application*)

Conclusions

- > Delay-Doppler is successful for suppressing alongtrack clutter, enhancing radar sounding signals
- > High-altitude radar sounding proven to be feasible
- > PARIS design successfully demonstrates robust (*and generalizable*) radar sounder principles
- Cross-track clutter suppression by polarimetric selectivity is a promising (*but as yet untested*) technique
- ➢ In practical situations for which clutter vs signal polarimetric phase distributions are significantly different, then large SCR gain is likely
- > Recommend continued development of these themes