

1

Recent Advances in the Development Of a Lightweight, Flexible 16x16 Antenna Array with RF MEMS Phase Shifters at 14 GHz

David Chung¹, Swapan Bhattacharya¹, G. Ponchak² and John Papapolymerou¹*

*Associate Professor

¹School of Electrical & Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332

²NASA Glenn Research Center, Cleveland, OH 44135

ESTO Conference June 2008

- Introduction
- RF MEMS Switches and Low Loss Phase Shifters on LCP
- 3-D Integrated RF MEMS Phased Array Module (2x2)
- Recent Results on Large Antenna Array
- Conclusions

• Introduction

- RF MEMS Switches and Low Loss Phase Shifters on LCP
- 3-D Integrated RF MEMS Phased Array Module (2x2)
- Recent Results on Large Antenna Array
- Conclusions

Introduction

192mm

• Objective

Develop a large lightweight and deployable phased array using RF-MEMS.
Integration with other passive and active circuits.

Challenges

 Obtain desired beam-steering for earth coverage, with the desired radiation pattern and return loss characteristics

192mm

- Low cross-polarization and back-sidelobe level
- Low loss
- Compact Structure
- High Degree of Integration
- Expandable Design
- Flexibility

Proposed Solution

- Aperture-fed microstrip patch antennas
- Corporate feed network
- A 3-D System-on-a-Package Approach

256 elements 16 4x4 tiles 8 4x8 tiles

SOP RF Front End Evolution

Sub-Array 3-D Integration

Georgia Institute of Technology

• Introduction

• RF MEMS Switches and Low Loss Phase Shifters on LCP

- 3-D Integrated RF MEMS Phased Array Module (2x2)
- Recent Results on Large Antenna Array
- Conclusions

Enabling technologies: RF MEMS and micromachining

Cantilever beam

- ***** Electrostatic actuation
- * Low loss and low cost
- * High linearity no distortion
- * No power consumption
- * Switching time 1-50 μ s
- * Reliability & RF power?
- * Packaging?

The springs anchor the membrane to the finite ground coplanar waveguide's (FGC's) ground planes [not shown]. A special process was developed to fabricate the MEMS switches on and LCP substrate.

Dark brown – electroplated gold Yellow – evaporated gold

Switching speed ~ 12 usec Actuation voltage: 20-40 V More than 0.5B Cycles

Capable of phase shifts from 0° to 337.5° in 22.5° increments

Packaging of 4-bit Phase Shifter

Georgialnstitute

S11 0 S21 0

\$11 22.5

\$21 22.5

\$11 67.5 S21 67.5

\$11 90

\$21 90 \$11 112.6

S21 112.5

\$11 135 \$21 135 S11 157.5

\$21 157.5

S11 180

\$21 180

\$11 202.5

\$21 202.5

\$11 247.5 \$21 247.5 \$11 270 \$21 270

\$11 292.5 \$21 292.5 S11 315

S21 315 \$11 337.5 \$21 337.5

Best

Case

-49.83

-0.72

0.34

S11 225 S21 225

\$11.45 S21 45

of **Tech**nology

- Introduction
- RF MEMS Switches and Low Loss Phase Shifters on LCP
- 3-D Integrated RF MEMS Phased Array Module (2x2)
- Recent Results on Large Antenna Array
- Conclusions

- 2x2 patch antenna design with two 1-bit MEMS phase shifters
- LNA on same layer and different layer
- Multilayer LCP design

Second Design Stack-Up

Top Layer

Bottom Layer (Features on backside)

LNA Package Layer

LNA Cap Layer

Fist Design Photo

N. Kingsley, G. Ponchak and J. Papapolymerou, "Reconfigurable RF MEMS Communication Module on LCP Substrate," IEEE Transactions on Antennas and Propagation, January 2008

Second Design Photo

The LNA and off-chip capacitors are located on an embedded layer. They are fed via aperture coupling.

Radiation Patterns (Design#1)

Radiation Patterns (Design#2)

Beam Steering Range: 12 degrees

- Introduction
- RF MEMS Switches and Low Loss Phase Shifters on LCP
- 3-D Integrated RF MEMS Phased Array Module (2x2)
- Recent Results on Large Antenna Array
- Conclusions

Complete Phased Array Layout

Cross-Sectional View of stitched 4x8 structure

Resonance at 13.75 GHz is suppressed by metal grounding

Metro Circuit Fabricated Panel - Patch Radiator Side

Metro Circuit Fabricated Panel

- CPW transition through plated vias

Metro Circuit Fabricated Panel vs GIT Fabricated 4x8 array

GIT Fab

26

Metro Circuit Fabricated Panel 4x8 with Phase Shifter 0-0 Degree

27

Metro Circuit Fabricated Panel 4x8 with Phase Shifter 0-90 Degree

Metro Circuit Fabricated Panel 8x8 with Phase Shifter 0-0 Degree

- LCP provides technology platform for low cost multilayer low loss microwave circuits (f>10 GHz)
- Packaged RF MEMS switches and low loss phase shifters (1 dB at 14 GHz) have been developed for the first time
- First demonstration of a low loss 14 GHz phased array LCP RF module with amplifier and RF MEMS phase shifters (12 degrees steering)
- Development of low loss stitching technique for multilayer large arrays above 10 GHz
- Very encouraging results for stitched 4x8 and 8x8 sub-arrays at 14 GHz
- Feeding network design very important for overall loss minimization