

A Multi-Functional Fiber Laser Lidar for Earth Science & Exploration NASA Grant No. IIP-04-0055

From the MFLL Team: Michael Dobbs, William Krabill, Mike Cisewski, F. Wallace Harrison, C. K. Shum, Doug McGregor, Mark Neal, Sheldon Stokes

Engineered for life

Contents

- Mission Overview
 - Team
 - Instrument Description
 - Implementation Requirements
- Instrument Architecture
 - Block Diagram
 - Optical Transceiver Head
 - Receiver Electronics
 - Active Transceiver Hardware
 - Geolocation Subsystem
- Test Campaigns
 - ITT Lidar Test Range
 - Dynamic Aviation Flights

- Technology Infusion Opportunities
 - Technology Readiness Level
 - Mission Infusion Opportunities
 - New Sources
 - New Detectors
- MFLL Thanks

The Project Team – Year 3

ITT Space Systems

Michael Braun, Michael Dobbs, Steve Horney, Douglas McGregor, Brad Musick, Mark Neal, Jim Ogle, Jay Overbeck

NASA Wallops

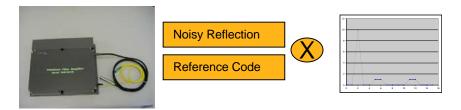
William Krabill

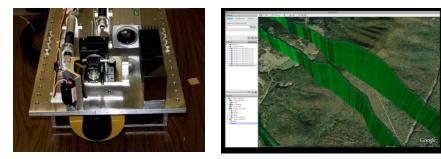
NASA Langley Research Center

Mike Cisewski

NASA AMES

Rose Dominguez


Ohio State University, School of Earth Sciences & Byrd Polar Research Center


CK Shum

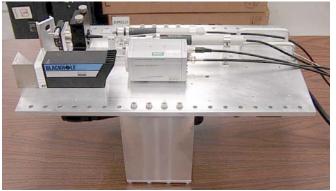
MFLL – A Robust Multi-pixel Mapping Instrument

- Primarily for topographical mapping of ice sheets, can be used or optimized for many other surfaces and aerosols
- Forgoes scanning, using a DOE transmitter, fiber focal plane
- Transmits PN encoded signal, Decodes ranges with convolution
- Amplified by mature CW Ytterbium Fiber Amplifier technology - 500,000 hour MTBF
- Passive optical head can be positioned many meters away from active components – tethered by optical fiber
- Single pixel flight in 2006, Nine pixel geolocated flight in 2008, many future opportunities for infusion

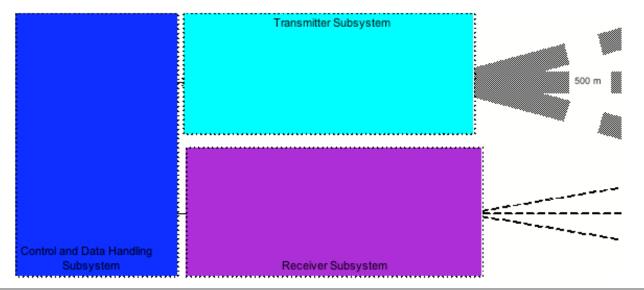
Ice Sheet Mapping – Requirements and Goals

- •MFLL Cardinal Rules for High Reliability
 - -No mechanical scanner
 - –Use Telecomm CW High TRL optical chain
 - -Build for Modularity

Requirement	Low Altitude Airborne (Threshold)	Medium Altitude Airborne (Goal)
Range Precision	10cm	10cm
GSD	2 m	2 m
System FOV	± 0.61°	± 15°
Operational Altitude	500 m (2000m demo)	~7000m
Platform Velocity	75 m/sec (125 demo)	125 m/sec
Max Rate of elevation Change	10% Slope	10% Slope
Geo-Location Accuracy	<2 meter	<2 meter
Aperture	2 in	2 in
Wavelengths	1064nm	854, 1064, 1550nm
Unambiguous Range	100m (1024m demo)	1500 – 7500m (TBR)
Bandpass	0.5nm (3nm demo)	0. 3nm
Sample Time	20msec	20msec
# of pixels	9	~100
Payload	Single Rack	POD
mass/volume/power	< 300lbs	100 lbs
Platform	P3 (or other)	UAV



INSTRUMENT ARCHITECTURE


Engineered for life

Top Level Block Diagram

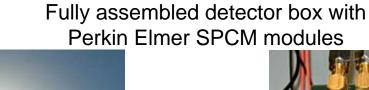
Optical Transceiver Head

Complete Optical Head

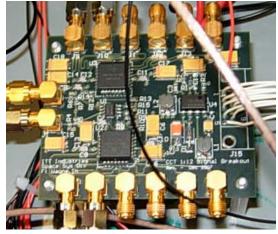
Fiberguide Array for Focal Plane

Tessera Diffractive Optic and Laser Output

Fiberguide and Tessera components built to perfect spec – drop in solutions



Receiver Electronics

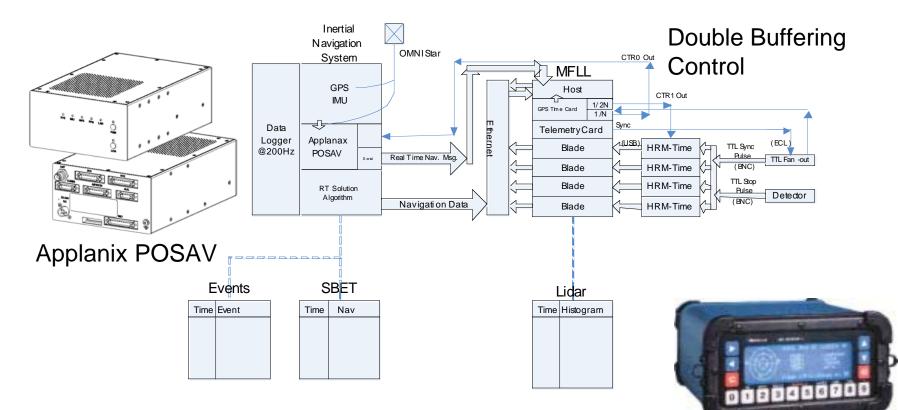


Perkin Elmer SPCM

SensL HRMTime module – tallies time-histograms of photon returns

Time-sync card – used to send identical synchronization pulse for histogram loop to all 10 channels

Active Transceiver Hardware


Top to Bottom: KVM, Seed Laser, YAM Head, YAM Amplifier, Detector/Timing Box, Blade Computers, Server

285 lbs, 24" x 24" x 30" plus additional room for cabling Tethered to transceiver head only by optical fiber

Geolocation Subsystem

Timing from the PN card controls both GPS logging and data collection.

Ashtech Z12

Both real-time GPS solutions and hard data are recorded for post processing.

EventsLogged +/- 1 millise cond

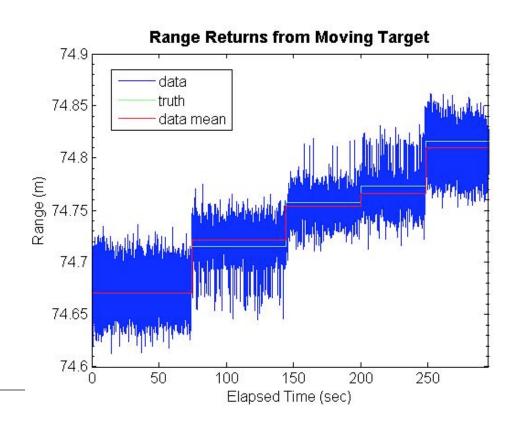
GPS Time / Position +/- 1 millise cond


TEST CAMPAIGNS

Engineered for life

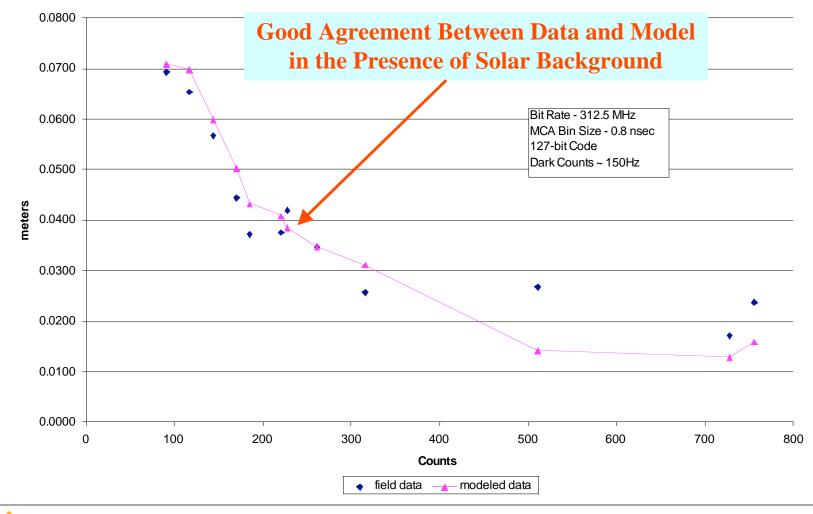
ITT LIDAR Test Range: Integration and Alignment

Fully Assembled Rack and Transciever Head

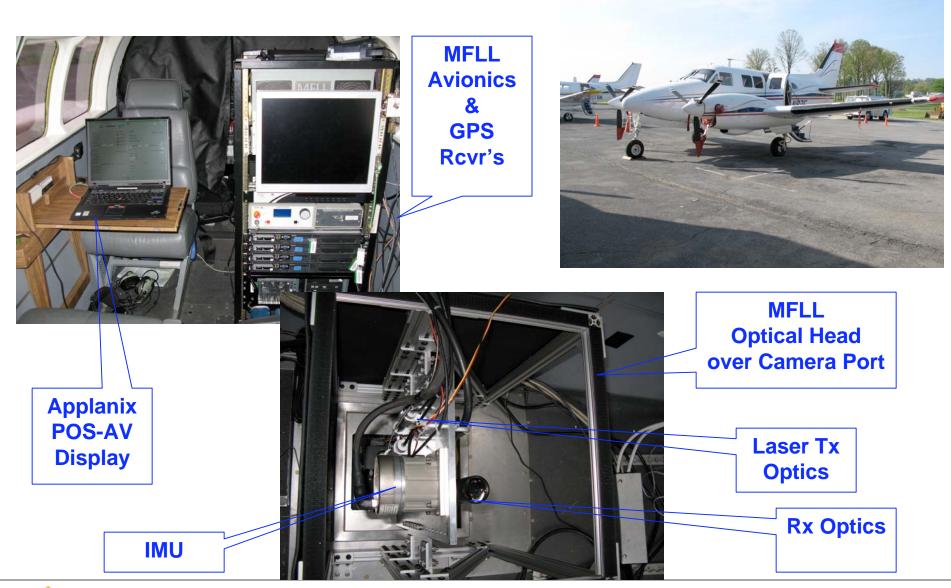

- Facility provides well-equipped, safe environment for LIDAR field testing
 Supports Cactus, Rattler, MWIR Digital, and ASCENDS, and ICE programs
- •Telescope Bore sighting and performance profiling

ITT LIDAR Test Range: Moving Target

- Target was stepped during continuous data collect to demonstrate instrument range sensitivity
 - Measured data and truth data match to within ~1cm

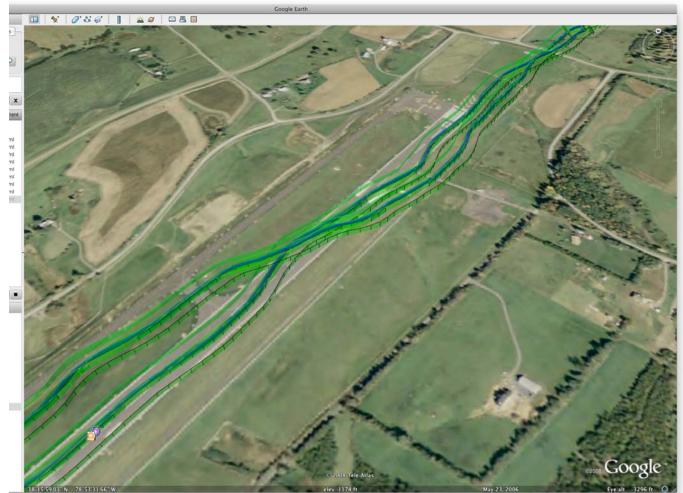


Farm Data and Model Comparison


Range Resolution vs Detector Counts - Daylight Farm Data Collect - 680m to Target

ESTC2008 | July 1, 2008 | 15

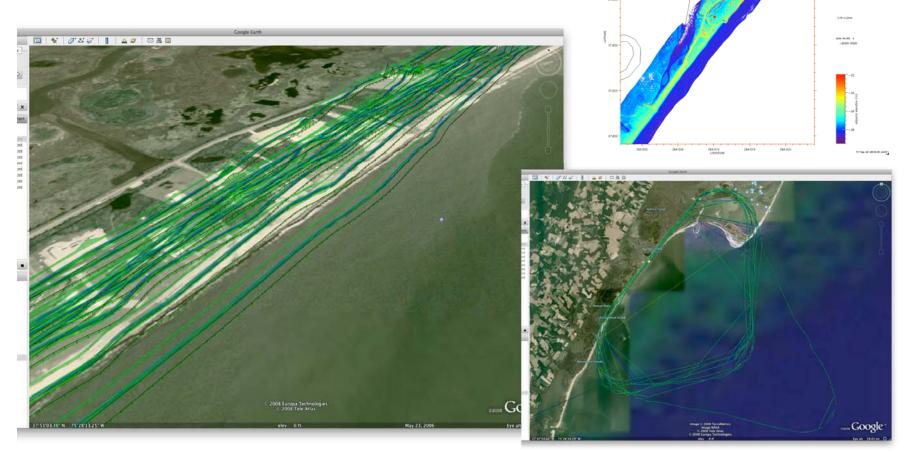
MFLL Installed in B90 Aircraft


Shenandoah Airport

•Well-surveyed runway for biasangle calibration

•First Pass Validation

•Data presented at 1/5 horizontal data rate in Google Earth

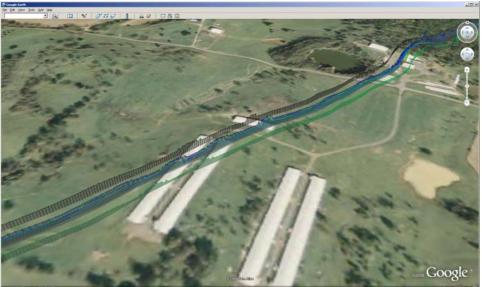


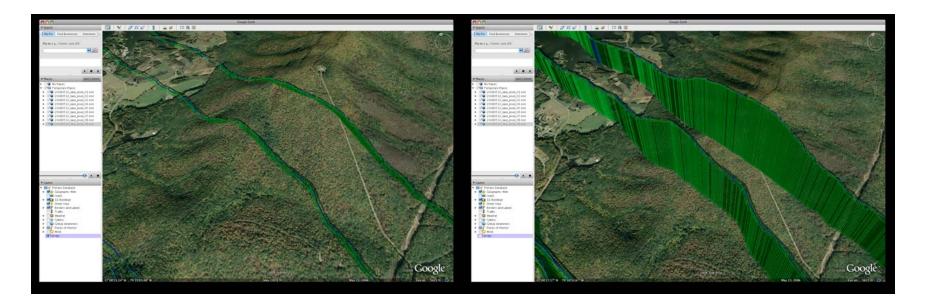
Wallops Island

Ocean tracks for further bias-angle calibrationLand tracks previously surveyed by William Krabill

Smith Mountain Lake

•Demonstration for hydrology missions





ESTC2008 | July 1, 2008 | 19

Fun Shots:

- Right: Chicken Coop Rooflines show geolocation agreement
- Below: Hill cross-sections with and without Google DEM demonstrate visualization

Technology Infusion Opportunities

Engineered for life

Technology Readiness Level

- Instrument System
 - End-End PN Altimeter System became TRL 6 upon completion of May flight campaign
 - PN Laser Ranger (Altimeter without Geolocation) was TRL 6 in June 2007.
- Transmitter
 - Transmitter Components such as DFB Seed Laser, Modulators and Fiber Amplifier are TRL 6 per NEPP
 - Prior work by ITT in 2001 qualified DFB and Fiber Amplifiers.
 - On-going work in 2007 and 2008 by LaRC and ITT provide additional qualification data
- Receiver
 - The Perkin Elmer Detector is TRL 7+ per deployment on GLAS
 - PN Range Signal processing is TRL 8 per deployment on GPS

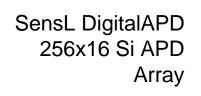
Mission Infusion Opportunities

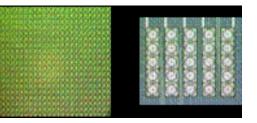
- Missions in need of few pixels, and what MFLL can add:
 - ASCENDS aerosol profiling, CO2 LIDAR
 - ICESatII 4 pixel bias angle correction
 - ACE Low resolution aerosol profiling
- Missions in need of 3-D topographic imaging
 - ALHAT terrain correlation and obstacle avoidance on regolith
 - ALIST 5m terrain accuracy
 - DESDynI 25m terrain accuracy
 - ClimateHawk UAV platform with many environmental sensors

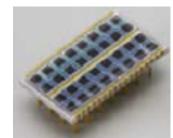
New Sources

- Aculight Micropulse Lasers, 1550 and 1100nm
- QPC high-power pump diodes, 792-1550nm solutions

• Difference Frequency Generation in Photonic Crystals for MWIR, 2-3um

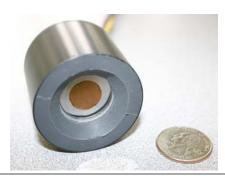






New Detectors

- Required: Large pixel areas for high sensitivity and telescope coupling
- SensL new high efficiency arrays for visible wavelengths
- Hamamatsu new high efficiency SWIR arrays good to 1100nm
- Hamamatsu new PMT for 1550nm
- Intevac new intensified photodiode, models for 800, 1100, 1500nm

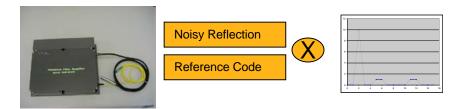


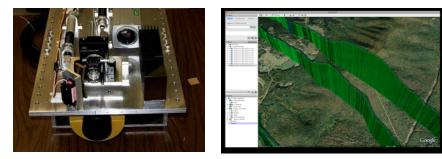
Hamamatsu S8550 32 element Si APD Array

Hamamatsu H10330-75 PMT Module

Intevac IPD

MFLL Thanks You!


- For their geolocation expertise and hardware:
 - NASA AMES Robert Billings, Rose Domiguez
 - NASA Wallops William Krabill, Earl Fredrick, John Sonntag
- The can-do aircraft team at Dynamic Aviation:
 - Steve Scates, Laura Laster, Philip Burke and pilots Steve Durkley and Jessica Jackson
- And NASA ESTO for this opportunity Janice Buckner



MFLL – A Robust Multi-pixel Mapping Instrument

- Primarily for topographical mapping of ice sheets, can be used or optimized for many other surfaces and aerosols
- Forgoes scanning, using a DOE transmitter, fiber focal plane
- Transmits PN encoded signal, Decodes ranges with convolution
- Amplified by mature CW Ytterbium Fiber Amplifier technology - 500,000 hour MTBF
- Passive optical head can be positioned many meters away from active components – tethered by optical fiber
- Single pixel flight in 2006, Nine pixel geolocated flight in 2008, many future opportunities for infusion

