
Application of Middleware and Agent

Technologies to a Representative

Sensor Network

Supported by NASA ESTO (AIST-ROSES program)

John S. Kinnebrew*
john.s.kinnebrew@vanderbilt.edu

* Vanderbilt University

 EECS Department & ISIS

 Nashville, TN 37203

** Lockheed-Martin Space Systems

 Advanced Technology Center

 Palo Alto, CA. 94304

William R. Otte*, Douglas C. Schmidt*,
Gautam Biswas*, and Dipa Suri**

ATC

Embedded systems

Soft/hard real-time

QoS requirements

Limited computational

resources

Power management

Distributed resources

Intermittent communication

Temporary/ permanent

loss of access to data

Changing network

topology

Sensor Webs

Top-down and bottom-up forces affect utility of tasks/configurations

User requests provide goals for data collection and analysis (top-down)

Local conditions determine appropriate tasks to achieve goals (bottom-up)

Multi-agent Architecture for Coordinated

Responsive Observations (MACRO)

Mission level

Mission agent controls a sensor

net

User agents provide interface for

applications and scientists

Brokers mediate contract net

negotiations

Resource level

Exec agent in control of local

resource group

Other agents as necessary

Component middleware

infrastructure

Mission

Agent

Mission
Agent

Mission

Agent

User

Agent

User

Agent

SA -POP , RACE

G
oal

Exec

Agent

Science

Agent

Comm

Agent

Goa ls &Feedback

O
p
 S

tr
in

g

O
p

 S
tr

in
g

Gizmo

 F

e
e
d
b

a
c
k

D
e

p
lo

y
m

e
n
t

Data
S
tream

Sensor Net

Resource

Group

Broker Agents
(Contract Net

Negotiations)

Distributed

Planning /

Scheduling

SEAMONSTER Objectives

Scientifically Motivated

Technology Development funded by NASA

ESTO (AIST)

Path for Technology Infusion

Scientific Collaborations

Testbed Sensor Web

Technology Collaborations

SouthEast

Alaska

MOnitoring

Network for

Science

Technology

Education and

Research

Weather

Station

Serial/

USB (?)

Pan/Tilt/Zoom

Camera
802.3

USB
WiFi

A/D

XmitterProcessor

(TinyOS)

A/D

XmitterProcessor

(TinyOS)

Mote

Low-Level Computational

Node

Battery

Pack

 High Level

Computational Node

Voltage

Pressure

Transducer

Car Battery

802.15.4ZigBee

Weather

Station

Car Battery

Water

Sensor

A

N

T

E

N

N

A

WiFi

Solar Array

Weather

Station

A

N

T

E

N

N

A

Remote Sensor Net 2

MACRO

Data Acquisition

Component

MACRO Data

Acq. Component

MACRO

Resource

Group

Agent.

(Science)

MACRO Data

Acq. Component
UAS Command & Control

Planner/Scheduler Resource Mgmt.

Data

Repository

LM-ATC Command & Control

Users

A

N

T

E

N

N

A

MACRO

Mission

Agent

Remote Sensor Net 1

Remote Sensor Net 3

 MACRO

Mission Agents

Data

Repository

MACRO

Resource

Group

Agent

(Comm)

MACRO

Resource

Group

Agent

(Exec)

MACRO for SEAMONSTER

MACRO

Resource

Group

Agent

(Exec)

CORBA Component Model (CCM) – Overview
• Components encapsulate application

“business” logic

• Components interact via ports

• Provided interfaces, e.g.,facets

• Required connection points, e.g.,

receptacles

• Event sinks & sources

• Attributes

• Containers provide execution

environment for components with

common operating requirements

• Components/containers can also

• Communicate via a middleware bus &

• Reuse common middleware services

SecurityReplicas NotifiersPersisting

SchedulerA/V Streams Load Balancing

…

Container

… …

 Middleware Bus

Container

…

• Repository Manager

–Database of components that

are available for deployment

(“staging area”)

• Target Manager

–Retrieval of target data (i.e.,

available nodes & resources)

• Execution Manager

–Execution of an application

according to a “Deployment

Plan”

• Domain Application Manager

–Responsible for deploying an

application at the domain

level

• Domain Application

–Represents a “global” application

that was deployed across nodes

• Node Manager

–Responsible for managing a

portion of an application that’s

limited to its node

• Node Application Manager

–Responsible for deploying a

locality constrained application

onto a node

• Node Application

–Represents a portion of an

application that’s executing within

a single node

 Deployment Infrastructure Overview

“Component Software”

Runtime Model

“Target” Runtime Model

“Execution” Runtime Model

www.cs.wustl.edu/~schmidt/PDF/DanCE.pdf

GME

SA-POP

CoSMIC

TAO

CIAO
PICML

CORBA
Services

R
A
C
E

ReDAC

D
a
N

C
EModel Driven

Software

Development

ACE

 Application

Deployment and

 Configuration

Dynamic

Resource

Management

Interoperability

Smart sensing,

 autonomy,

 adaptability

MACRO Architecture

System Constituents

ACE

OS

Hardware

Middleware, Level 1; portability for hardware, operating system

TAO
Middleware, Level 2 based on CORBA 2 specification;

distributed objects, interoperability for distributed heterogeneity

CIAO
Middleware Level 3; based on CORBA 3 specification; distributed

components, system configuration, & deployment

CORBA

Services

Naming Service: Agent locator (white pages)

Event Service: Agent Communication (publish/subscribe paradigm)

RACE

ReDaC

Dynamic

resource

management

SA-POP
Planner – Agent reasoning; used as a service

MACRO

 Agents

Dynamic

resource

management &

(re)configuration

System Construction

ACE

TAO

CIAO (and DaNCE)

GME
CoSMIC

PICML

SA-POP
CORBA

Services

RACE

ReDAC

MACRO Agents

Linux Windows VxWorks

ACE ACE

SA-POP
CORBA

Services

RACE

ReDAC

MACRO Agents

SA-POP
CORBA

Services

RACE

ReDAC

MACRO Agents

Integrated System

MACRO Testbed Hardware (1/2)

Closely emulate SEAMONSTER

environment

2 Vexcel Microservers

3 SLUGS w/ WET54G

Wireless/Ethernet bridges

10 Motiev tMote Sky

Vexcel (Microsoft) Microservers

Low-power ARM Single Board

Computers

Power Conditioning Subsystem

COTS Wi-Fi/Ethernet bridge

WiFi Signal Amplifier

GPS

Solar charging regulator

Weather/Cold/Bear-proof case

SLUGS

Re-purposed Linksys NSLU2

Network-Attached-Storage

Low-cost ARM Single Board

Computers

Communicate using WET54G Wi-

Fi/Ethernet bridges

Moteiv tMote Sky

Low-power field sensors

Temperature

Humidity

Light

2.4 Ghz 802.15.4

USB connector for base station or

external sensor

MACRO Testbed Hardware (2/2)

Provides best fidelity to actual

SEAMONSTER environment

Most difficult in terms of

connectivity

Consists of at least three

physical locations

Microserver with “weather

station” & tMote network

Microserver which collates

data from several SLUGS
Two of three SLUGS in different

locations (with attached tMote

networks)

Testbed Topology w/ Physical Distribution

Avoids potential firewall

problems with physically

separated layouts

Single tMote network due to

ZigBee ad-hoc network

protocol

μServer not directly connected

to Server has a WAP (running

in WDS mode)

Second ‘hop’ through second

μServer may present

communication challenges for

deployment & configuration

Testbed Topology w/o Physical Distribution

Middleware Integration Challenges (1/3)

Context: Adapting to changing network

topology

Sensor networks are often deployed in

remote/inaccessible locations

Limited resources and/or damage may

induce temporary loss of communication

with nodes

Problem: Failed links or nodes cause

temporary or permanent loss of access

to data stored on effected nodes

Solution Approach

Introduce asynchronous

publish/subscribe ports into agent

components deployed onto nodes

Agents publish noteworthy data to these

ports, and log data received

Data peers managed by deployment

infrastructure

Middleware Integration Challenges (2/3)

Context –

Sensor nodes may be interested in

large numbers of observable

phenomena

Type, duration, and frequency of

observation may change over time

Problem – Limited resources

(processor, bandwidth, storage)

requires prioritization of observable

phenomena

Solution Approach –

Nodes contain components

implementing agents capable of

intelligent, autonomous planning

Agents may influence deployed

applications through re-deployment

interfaces and CCM component

homes

Middleware Integration Challenges (3/3)

Context –

Sensor nodes often have limited power,

changing weather conditions may impede

ability to re-charge batteries

Nodes may need to periodically power down

to conserve battery life

Problem –

Sleep/wake cycles causes the infrastructure

and applications to lose state

Deployment infrastructure must preserve

state to correctly re-deploy application

Application state must be preserved

Solution Approach –

Describe all deployments as locality-

constrained

Maintain entire deployment tool chains on

each node

Periodically instruct agents to save state

using CCM-defined ccm_store and

ccm_load operations

Future Integration Challenges

Resource Constraints

Sensor nodes have limited processing and memory

Relatively large footprint of CCM limits number of components

deployed to a single node

Infrastructure Fault Tolerance

Uncertain and harsh nature of many sensor web environments

presents substantial challenge to deployment infrastructure

Current solution unnecessarily coarse-grained and resource heavy

Communication in Sparse Wireless Networks

Point-to-point communication is an implicit requirement of

CORBA/CCM

Challenge currently avoided using infrastructure-based wireless

networks

CORBA Wireless Access and Terminal Mobility specification may

provide better solution

Questions and Discussion

Extra Slides

 Deployment Infrastructure Overview (2/2)

NodeApplication

NodeApplicationManager

<<Manager>>

1..*

+spawns

1..*

NodeManager

<<Manager>>

1

+spawns

1

DomainApplicationManager

DomainApplication

<<Manager>>

1..*

+preparePlan

1..*
ExecutionManager

<<Manager>>

1..*

+spawns

1..*

For each Node in the

Deployment Plan.

Repository

Administrator

Planner

TargetManager

<<Manager>>

1

+commitResources ()

1

+releaseResources ()

+resourceDataProvider

Plans deployment of application

based on resoruce data from

resourceDataProvider. Resolve the

package using searchPath. Produce a

compatible deployment plan.

RepositoryManager
<<Manager>>

<<manage packages>>

Install and configure

packages in repository.

Executor

1+preparePlan 1

1

+findPackage

1

DeploymentPlan

<<Planner>>

<<creates>>

+searchPath

+uses

Uses plan. Execute it in

the target environment.

Infrastructure (Services)

SA-POP & RACE in MACRO

SA-POP

Dynamic planning and

scheduling under uncertainty

Replanning/rescheduling

Domain knowledge captured in

TaskNetwork and TaskMap

RACE

Dynamic resource allocation

Control algorithms for

maintaining required QoS

Pluggable allocation and control

algorithms

Physical Resources

Uniform interface to deploy
& manage components

RACE

Deployment , Configuration & Control

Mechanism

Allocation
Algorithms

Control
Algorithms

Application
Performance

Data

Resource
Utilization

Data

Application

Monitors

Resource

Monitors

 Component Middleware Infrastructure
(CIAO/DAnCE)

Deploy and manage
components

Deployment / Mission

Feedback

SA-POP
Task

Network

Task

Map

Spreading

Activation

Planning Scheduling

Goals

Operational

Strings

