Delay/Disruption Tolerant Networking (DTN) for a Low Earth Orbit (LEO) Space Network

Earth Science Technology Conference (ESTC 2008)
University of Maryland, June 2008

Will Ivancic
NASA Glenn Research Center

How does DTN fit into a Low Earth Orbit Space Network? "Operationally Responsive Space"

These slides have animation. As such, they are available as MS PowerPoint at:

http://roland.grc.nasa.gov/~ivancic/papers_presentations/2008/IETF71_IRTF-DTN.ppt

Secure Autonomous Integrated Controller for Distributed Sensor Webs

Glenn Research Center

Communications Technology Division

Glenn Research Center

Space-base DTN using a Commercially Operational Low Earth Orbiting Satellite

Satellite Communication 101

Glenn Research Center

Communications Technology Division

- The United Kingdom -Disaster Monitoring Constellation (UK-DMC) satellite is an imaging satellite
 - One of 5 (or 6 or 7 as constellation grows)
 - Commercial Money Making Operation
 - You can request an image (and pay)
- Polar Orbit approximately once every 100 minutes
- Satellite is in view of any one ground station for 8 to 14 minutes – hence disruption.
- Round Trip Time Delay is ~ 100 msec, thus delay is not the issue here (unlike for deep space).

UK-DMC Characteristic

Glenn Research Center

Communications Technology Division

- Onboard experimental Payload, Cisco router in Low Earth Orbit (CLEO)
 - Not Used for DTN Testing
- Three Solid State Data Recorders
 - 1 with a StrongARM Processor
 - 2 with Motorola MPC8260 PowerPC (We use one of these)
 - RTEMS operating system (POSIX API, BSD sockets)
 - Storage Capacity 1 GByte RAM
 - Operating System Image limit is 1 Mbyte
- Uplink is 9600 bits per second
- Downlink is 8.134 Mbps
- Datalink Frame Relay/HDLC
- Network Protocol IPv4 (could easily run IPv6)
- Transport Protocol (Saratoga version 0 over UDP)
 - Saratoga version 0 is existing SSTL transport
 - Saratoga version 1 is what is in the Internet Drafts
 - Enhances version 0 to make it more widely usable

Costs

Glenn Research Center

Communications Technology Division

Satellite Networks & Architectures Branch

- If DTN code upload DOES NOT disrupt SSTL normal operations
 - \$Y US per pass to SSTL
- If DTN code upload disrupts SSTL normal operations
 - Approximately 10 times \$Y US per 24 hours
- For general use, UK-DMC
 - Satellite cost is \$Y US per pass
- If one uses other ground stations such as Universal Space Networks (USN), cost is:
 - \$Y US per pass to SSTL
 - approximately \$700 per pass to USN

Thus, Ground-based Testing is extremely Important.

DTN Testbed

Glenn Research Center

Communications Technology Division

Number of Possible Tests per Pass

Glenn Research Center

Communications Technology Division

Description	Units					
Pass time	min	8	9	10	11	12
Pass time	seconds	480	540	600	660	720
Image Size (Mbytes)	Mbytes	160	160	160	160	160
Fragment Size (Mbytes)	Mbytes	80	80	80	80	80
Number of Fragments	GCI	2	2	2	2	2
Downlink Line Rate	Mbps	8	8	8	8	8
Test1: Saratoga full file Transfer Test	seconds	160	160	160	160	160
Test 2: DTN full Bundle Transfer	seconds	160	160	160	160	160
Test 3: Saratoga Proactive Fragmentation Transfer	seconds	160	160	160	160	160
Number of Tests Completed		3	3.375	3.75	4.125	4.5
Number of bundles that can be transferred in test 3		2	2.75	3.5	4.25	5

DTN Test Plan

Glenn Research Center

Communications Technology Division

Satellite Networks & Architectures Branch

Goal

- Demonstrate DTN Bundle Transfer from UK-DMC to SSTL Ground Station
- Demonstrate that DTN code and general SSTL code can coexist without affecting normal SSTL Operations
 - Reduces costs from 10 times \$Y per 24 hours to \$Y per pass

Configuration

- UK-DMC acquired a150 Mbyte image over the Gulf of Khambhat, India at ~04:35 UTC on 25 January 2008.
- DTN bundling code default set to 80 Mbytes for proactive fragmentation

Tests

- Basic file download using existing technique (GRC implementation of Saratoga version 0)
- 2. Same file downloaded but treated as single bundle (DTN)
- 3. Same file download but using DTN proactive fragmentation with 80 Mbytes preconfigured fragments.
- 4. SSTL used their Workstation and SSTL implementation of Saratoga version 0

UK-DMC Implementation

Glenn Research Center

Communications Technology Division

Bundles on UK-DMC

File Names

Glenn Research Center

Communications Technology Division

Satellite Networks & Architectures Branch

Payload

DU000c76pm

DTN Metadata

Proactive Fragmentation Metadata - 1

Proactive Fragmentation

Metadata - 0

← DU000c76pm.dtn

← DU000c76pm.79999999-153700328.dtn

← DU000c76pm.0-79999999.dtn

DTN Test Results

Glenn Research Center

Communications Technology Division

- Test 1 Image file DU00076pm was received using GRC Saratoga version 0 implementation
- Test 2 DTN file and associated metadata for the full bundle was received by Bundling-SSTL and then forwarded as a full bundle to Bundinging-GRC1
- Test 3 Proactive Fragmentation:
 - The 1st proactive fragmented bundle from the UK-DMC and it was automatically transferred using DTN-2 between Bundling-SSTL to Bundling-GRC1.
 - The 2nd proactive fragmentation bundle was not retrieved
 - The directory and the syslog file showed creation of the 1st fragmentation metadata file, but not the second.
 - Analysis showed SSTL operating system limits file names to 32 characters.
- Test 4 SSTL downloaded 150 Mbyte image cleanly
- Post Test analysis
 - Reconstructed DTN bundle payload and image file (tests 1 and 2) did not match
 - Bug found in GRC Saratoga Implementation of "Holes to fill" (we did not request retransmissions properly)

Lessons Learned

Glenn Research Center

Communications Technology Division

- "Holes to fill" bug would have been caught with checksums (reliability check)
- Improve ground-based testing to hopefully avoid future problems
 - Error generation was not turned on as BER system was out of the loop for a while during testbed debugging – one of a kind system is temperamental sometimes
- Time Synchronization is critical
 - Test time synchronization of all DTN nodes prior to testing
 - DTN expiration timer is 3 days
 - Requires image to be taken within 3 days of download.
 - Perhaps current DTN requirement for time synchronization should be reconsidered.
 - Perhaps decrement time on hop-by-hop to avoid loops
 - Perhaps time synchronization optional?
 - Not all DTN nodes may be able to do time synchronization.