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Abstract - We have developed a new concept for a smart 
sensor web technology for measurements of soil moisture 
that include spaceborne and in-situ assets. The objective of 
the technology is to enable a guided/adaptive sampling 
strategy for the in-situ sensor network to meet the 
measurement validation objectives of the spaceborne sensors, 
with respect to resolution and accuracy. One potential 
application is the Soil Moisture Active/Passive (SMAP) 
mission, The sensor nodes are guided to perform as a macro-
instrument measuring processes at the scale of the satellite 
footprint, hence meeting the requirements for the difficult 
problem of validation of satellite measurements. The science 
measurements considered are the surface-to-depth profiles of 
soil moisture estimated from satellite radars and radiometers, 
with calibration and validation using in-situ sensors. 
Satellites allow global mapping but with coarse footprints. 
The total variability in soil-moisture fields comes from 
variability in processes on various scales. Installing an in-
situ network to sample the field for all ranges of variability 
is impractical. However, a sparser but smarter network can 
provide the validation estimates by operating in a guided 
fashion with guidance from its own sparse measurements. 
The feedback and control take place in the context of a 
dynamic data assimilation system. The overall design of the 
smart sensor web - including the control architecture, 
assimilation framework, and actuation hardware - will be 
presented in this paper. We also present results of initial 
numerical and laboratory demonstrations of the sensor web 
concept, which includes a small number of soil moisture 
sensors and their measurement model, a dynamic soil 
moisture time-evolution model (SWAP), and an optimal 
control strategy. Based on these results, the TRL has been 
advanced to 3 from the initial level of 2. 
 

I. INTRODUCTION 

The long-term vision of Earth Science measurements 
involves sensor webs that can provide information at 
conforming spatial and temporal sampling scales, and at 
selectable times and locations, depending on the phenomena 
under observation. Each of the six strategic focus areas of 
NASA Earth Science (climate, carbon, surface, atmosphere, 
weather, and water) has a number of measurement needs, 
many of which will ultimately need to be measured via such 

a sensor web architecture. Here, we develop technologies 
that enable key components of a sensor web for an example 
measurement need, namely, soil moisture. Soil moisture is a 
measurement need in four out of the six strategic focus area 
roadmaps (it appears in climate, carbon, weather, and water 
roadmaps). It is used in all land surface models, all water 
and energy balance models, general circulation models, 
weather prediction models, and ecosystem process 
simulation models. Depending on the particular application 
area, this quantity may need to be measured with a number 
of different sampling characteristics. It is therefore necessary 
to develop sensor web capabilities to enable flexible and 
guided sampling scenarios, as well as calibration and 
validation strategies to support them. 
 
This project seeks to develop and demonstrate, via numerical 
and laboratory experiments, the architecture and algorithms 
for a sensor web control system that interconnects the 
elements of the web and enables “smart sensing” through the 
integration of a data assimilation framework. The sensor 
nodes will be guided to serve as a macro-instrument 
compatible with the large-scale effective measurements by 
satellite sensors. 
 

II. THE SENSOR WEB CONCEPT 

The ground footprints of remote sensors are often coarser 
than the scale of variations of the variables. As a result, the 
remote sensing estimate is only a coarse-resolution estimate 
of a field mean. In-situ sensors often sample a point location 
in the heterogeneous field. Statistics of errors of retrieval are 
indicative of errors in measurements,  and errors in 
representativeness of in-situ samples.  These two errors 
cannot be separated using existing sampling networks. 
 
For soil moisture profile fields, for example, the total 
variability is derived from variability in processes that 
influence it on a wide spectrum of scales ranging from 
meters to several kilometers.  This broad spectrum of 
variability and multiple causes is not unique to soil moisture, 
but is a characteristic of many Earth system variables. A key 
challenge is how to calibrate and validate the satellite 
footprint estimate, for example from SMAP, which is an 
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average of the field that may be 10s or 100s of km2 for the 
radar and radiometer, resepectively. To install an in-situ 
sensor network that samples the field across all ranges of 
variability is impractical and cost-prohibitive.  Our 
hypothesis is that a much smaller but smarter network can 
provide the needed validation estimates for satellite 
measurements.  
 
The sensor web has to operate in a guided fashion. The 
guidance comes from the sparse measurements themselves, 
which, through a control system, guide the sensor web to 
modify the sampling rate and other parameters such that 
their observations yield the most representative picture of 
the satellite footprint conditions.  The control and feedback 
take place in the context of a data assimilation system that 
merges data from forecast models, sensors, and relevant 
auxiliary information to produce the best estimate of the 
variable field and its anticipated evolution, balanced against 
measurement costs. This means that even if a measurement 
may improve the value of the soil moisture estimate, if it is 
too costly in term of power usage, the optimal decision could 
be not to take that measurement. 
 
Here, we develop and demonstrate this control system for 
guided sampling by a sensor web.  The guidance is towards 
producing representative and statistically unbiased estimates 
of the remote sensing footprint variable estimate based on a 
finite-size sensor web with dynamic operations.  The duty 
cycle and sampling at the network nodes will be driven by a 
data assimilation system that can provide guidance on the 
worth of each measurement at different sampling intervals. 
Uncertainty in the model and current estimates can form the 
basis for the quantitative evaluation of the worth of data at 
each sensor web node. Dynamic commanding and data 
ingestion from those nodes optimize the value of the sparse 
ground-truth network in validating the remote sensing-based 

coarse-resolution retrieval.  Here, we build a prototype of the 
semiclosed control system for the sensor web, coupled with 
a data assimilation system, for the case of soil moisture 
remote sensing as an example. The remote sensing 
instruments could produce observations at km-scale. The 
instruments operating at an in situ node could include 
meteorological sensors (temperature, precipitation, wind, 
solar radiation, etc.), soil moisture probes installed on 
surface and at varying depths, and multifrequency tower-
mounted radars for O(100)m observations of soil moisture 
profile fields. Ancillary data such as topography, vegetation 
cover, and soil texture could also be provided at the spatial 
scale of in situ observations. There are specific challenges 
with validating remote sensing estimates using these point 
and/or small-footprint (O(100m)) in situ samples.  These 
challenges will allow the demonstration of the advantages of 
the proposed approach. 
 

The real-time data assimilation will track the conditions for 
variability in soil moisture and guide the sensor web to 
modulate its measurement duty-cycle and other parameters 
across the network.  This is an adaptive sampling network 
guided by the data assimilation system that can feed back the 
value of each additional measurement. A block diagram 
depicting the interrelationships of the elements of the 
proposed system is shown in Figure 1. 
 
The in-situ sensor web data, fed to the coupled assimilation-
control system, will be used to determine the parameters 
required for the next set of sensor web measurements. 
Depending on the meteorological and other physical scene 
variations that are judged to influence the soil moisture 
profiles between the remote sensing measurement intervals, 
the sensors could be commanded to turn on or off, and 
depending on sensor type, to modify their sampling 
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Figure 1. Elements of the sensor web technology and their interrelationships. The semi-closed system generates guidance to the sensor web, 
through actuators, for modifying its sampling characteristics using a coupled data assimilation and control system, antecedent sensor data, and 
ancillary data (e.g., topography and soil texture). User command can also be incorporated. 
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parameters. For a tower-mounted radar, for example, 
parameters to control are the frequencies for different depths 
of observation or vegetation conditions, bandwidth for 
variable spatial resolutions, and number of samples to 
average depending on expected measurement noise levels. 
An actuator will transmit a data packet containing the 
control signals to each relevant node. The nodes will decode 
the received signals and set their sampling parameters 
accordingly. 
 

III. APPROACH 
 
A. Data Assimilation 
 
Data assimilation is a statistical estimation framework that 
combines physics-based model forecasts with observations 
[1]-[3].  In data assimilation it is assumed that models have 
uncertainty.  It is also assumed that observations have errors.  
The relevant measures of the probability density function of 
the model forecasts are propagated in time until 
measurements are available. The probability density function 
or measures of it are updated based on the relative 
uncertainty of model forecasts and observations. The data 
assimilation and the sensor web will be coupled through an 
optimal control system.  The duty cycle and weight given to 
each node measurement is evaluated against the value of that 
measurement in the data assimilation system.  Reduction in 
resulting covariance will determine which observation will 
have the most value. This information is passed on to the 

control system to dynamically adjust the sample averaging 
and data collection.  Since the model in the data assimilation 
will incorporate and integrate auxiliary information on 
vegetation, terrain drainage, soil texture, precipitation, etc., 

the possibility of fixing sensor positions representative of 
larger area will be explored. Data assimilation and sensor 
web-guided identification of station locations is beneficial 
since it allows long-term (multi-year) monitoring of a 
satellite footprint-scale estimate based on a sparse in-situ 
network. 
 
Data assimilation has to take place in the context of a time-
evolution model describing the physical process of soil 
moisture variations. The time and depth evolution of soil 
moisture fields can be expressed via a pair of coupled partial 
different equations (PDE) in space and time. This model has 
a number of parameters associated with terrain and 
meteorological conditions. The solution to the coupled 
differential equation is an estimate of future states of soil 
moisture fields with the knowledge of the current state and 
the model parameters. 
 
 The Soil-Water-Atmosphere-Plant (SWAP) model [4] is a 
community standard solver for such a model. SWAP 
incorporates surface energy balance by including 
micrometeorological data such as precipitation, winds, air 
temperature, and humidity. It also incorporates soil physics 
properties such as amplitude and phase characteristics of 
flow dynamics. It then solves the coupled differential 
equations numerically. We have used SWAP to develop a 
time-series of soil moisture variations using actual values of 
rainfall measurements for sample areas. 
 

B. Control Architecture  
 
The physics-based models have uncertainty and observations 
have errors.  Thus, we model soil moisture at any point 
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Figure 2. Control architecture. Each sensor measures variables over a finite period of time. Variables are 
correlated with the soil moisture field. Data are compressed at each sensor node and transmitted to the 
coordinating center, which derives an optimal control instruction set for the sensors, as well as an unbiased 
estimate of the soil moisture field at the remote sensor resolution, guided by data assimilation. 
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location in a spatial field as a discrete time stochastic 
process 

! 

{X
t
,t = 0,1,2,...}, the evolution of which is 

described by a stochastically forced hydrologic model. At 
specified times that maximize the information content of a 
measurement, each sensor can be activated to sense and 
transmit information.  The data gathered by each sensor is 
encoded/compressed and transmitted in real-time through 
noisy channels to the coordinating center.  At any time 

! 

t  the 
coordinating center utilizes the information it has gathered 
up to 

! 

t  to estimate field mean  and to specify the mode each 
sensor will employ at time 

! 

t +1, so as to gather additional 
data. Thus, the objective is to determine: (i) a sensor mode 
selection strategy for the coordinating center; (ii) an 
estimation strategy for the coordinating center; and (iii) real-
time encoding strategies for the sensors, so as to minimize 
the expected value of the sum of a function of the difference 
of the estimate 

! 

ˆ X 
t
 and field mean from 

! 

t = 0 up to time 
horizon 

! 

T . The control system architecture is shown in 
Figure 2. 
 
The above-described interdependence of sensor mode 
selection and real-time encoding strategies results in a 
challenging optimization/control problem [5]-[13]. We have 
established a common mathematical framework and 
terminology for the different elements of the project as 
shown in Figure 3. 
 
 

The data assimilation component consists of a physical 
dynamic evolution model ft, which, given the knowledge of 
values of the variable soil moisture Xt (up to time t), 
parametric uncertainties Wt (such as uncertainties in 
topography or temperature), and exogenous forcings at at 
time t (such as rain), predicts the value of variable soil 
moisture at the next point in time (t+1). This predicted value 

is Xt+1. The vector of all soil moisture measurements Xt is 
also called the state vector. The dynamic model ft is also 
called the state transition operator. The state transition 
operator describes the evolutions of soil moisture in space 
and time. Both variations are functions of scene parameters 
such as topography, soil type and texture, vegetation. They 
are also functions of external forcings such as rain, cloud 
cover, solar radiation, and temperature. The evolution of the 
soil moisture state vector is generally a dissipative process, 
but one that is forced with these exogenous discontinuities. 
The discontinuities, could pose barriers to information if the 
sensor network does not adapt its sampling strategy to 
capture the rapidly varying nature of the discontinuities. 
 
We also include the sensor measurement model as part of 
the assimilation system, since it provides the sensor data as 
an input to the time-evolution model. For the ith sensor, the 
measured value Yt

i is related to the value of the variable soil 
moisture Xt via a physical model ht

i and sensor parameter 
configuration Ut

i. These parameters could be frequency, 
polarization, power level, etc. Measurement noise is added 
to the true signal and denoted as Vt

i. Sensors make 
observations that can be translated into estimates of 
unknown variables. Sensor models do not include any time 
evolution or dynamic nature.  They can, however, include 
the probabilistic nature of the unknowns at time t.  The 
models and unknowns could be scalar (1-D) or vector (N-D), 
depending on how many variables are being measured and 

how many sensors there are. Different sensors allow 
estimates of the unknowns at different spatial scales. Sensors 
could be in-situ (moisture probes) or remote (tower-based, 
airborne, or spaceborne SARs and radiometers). In general, 
the estimation of unknowns is a complex task, depending on 
the degree of model nonlinearity, measurement noise, and 
sensor calibration. It is assumed that each sensor is 

Figure 3. Overall problem formulation and mathematical notation, showing the relationship between the different project components. 



5 

calibrated independently of the rest of the sensors in the 
web, but potentially in coordination with the entire web in 
terms of scheduling and resource usage. 
 
The control strategy is derived for the objective of 
minimizing a cost measure, which is a combination of 
achieving the best possible variable estimate at any given 
time and minimizing resource usage for making the required 
measurements. This means that even if a measurement may 
improve the value of the soil moisture estimate, if it is too 
costly in term of power usage, the optimal decision could be 
not to take that measurement. This strategy holds for a 
centralized stochastic optimization problem with imperfect 
observations, as we have assumed. Fundamental issues in 
selecting a sensor configuration are: 
 Energy consumption cost of current sensor 

configuration 
 Effect on the quality of the current state estimate 
 Effect on future decisions for sensor configurations and 

their effect on quality of future state estimates 
 Trade-off between the first and last two items above 
 
This problem belongs to the class of optimization problems 
known as Partially Observable Markov Decision Processes 
(POMDP). To solve such problems, backward induction is 
typically used to determine optimal sensor selection and 
estimation strategies sequentially in time, by moving 
backwards in time. The solution method has the following 
features: 

• Compute conditional probability pt of current state 
Xt using all previous measurements (and all 
previous sensor configurations) 

• Choose optimal sensor configuration Ut and 
optimal estimate using pt 

• Sensor selection strategy gt and estimation strategy 
lt are determined by specifying the optimal sensor 
configuration and optimal state estimate for every 
possible realization of pt 

The above off-line computations are numerically very 
expensive. The complexity increases with increasing number 
of sensors and increasing number of sensor modes. The 
number of sensor data quantization levels is also a factor in 
increasing the complexity. Once the off-line computations 
are performed, the on-line implementation of the control 
strategy is rather straightforward. We have successfully 

applied this strategy to a 1-D problem and with varying 
levels of success to a 2-D problem. In each case, a control 
policy table has been generated. The results will be shown at 
the presentation. 
 
C. Sensor Models 
 
We envision a sensor web that will ultimately comprise of 
different varieties of sensors. In particular, the soil moisture 
sensors could be localized, such as probes, or could be 
remote, such as tower-mounted or aircraft-based radars or 
radiometers. Deriving physics-based remote sensor models 
to relate their measurements to estimates of soil moisture is 
generally rather complicated. The in-situ sensors, on the 
other hand, offer an opportunity for accurate measurements 
that are related to soil moisture values via simple empirical 
models. Several standard methods of in-situ sensing exist, 
such as time-domain reflectometer (TDR) probes, neutron 
probes, capacitance probes, and ring resonators. We have 
chosen an in-situ soil moisture probe making highly 
localized measurements. We selected and procured 
capacitance probes from Decagon, model ECH2O EC-5, and 
developed its calibration curve in form of a third-order 

Figure 4. Left: the Decagon ECH2O EC-5 soil moisture probe. 
Right: calibration curve (or “sensor model”) derived from 
experimental data and used in the control algorithm. 
 

Figure 5. Top: a realistic soil moisture profile from surface to a 
depth of d1+d2. Middle: remote sensor could be a low-frequency 
radar (tower-mounted, airborne, or spaceborne) which can produce 
measurements related to soil moisture profiles at varying depths. 
Bottom: Example of backscattered co-pol phase dependence on 
moisture profile, to be used in developing inversion algorithms. 
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polynomial. This polynomial, shown in Figure 4 along with 
the probe and experimental data points, was used as the 
initial sensor model input to the control system.  The model 
generated with the empirical data represents a calibration 
accuracy of about 1%. 
 
For remote sensors, which could be tower-mounted, 
airborne, or spaceborne, the physics-based retrieval models 
of soil moisture involve solutions to nonlinear optimization 
problems. Considering a low-frequency radar as an example 
(Figure 5), its measured backscattering coefficients could be 
related to the profiles of soil moisture via models derived 
from Maxwell’s equations. A number of models that relate 
radar backscattering coefficients to soil moisture have 
recently been developed (the “forward” problem). The 
models could be numerical or analytical. The “inverse” 
problem, or the retrieval problem, has also been addressed in 
our previous works, but needs further advancement. The 
basic strategy is to derive multi-dimensional polynomial 
expressions that are derived from the more complicated 
numerical models in several unknowns. The closed-form 
nature of the fitted model allows us to apply a number of 
optimization techniques, both local and global. The 
statistical nature of the unknowns (e.g., soil moisture and 
surface roughness) can be systematically included in  
development of the optimization algorithm. 
 
D. Actuation hardware  
 
A key enabling technology in the proposed system is the 
proper actuation of the sensors using output computed by the 
control algorithms.  Actuation allows the measurement 
parameters to be dynamically adjusted according to the data 
collected so far, the inferred soil condition, as well as the 
overall objective of the sensing task.  This process involves 

the sensor radio transceiver receiving the control message 
from the coordinating center, decoding the message into a 
set of parameter values associated with the measurement 
device modes, and issuing the actuation command that leads 
to the parameter adjustment of the measurement device.  
Commonly available sensor platforms for R&D purposes, 
e.g., the MICA2 motes [16], often lack sophisticated 
actuation capabilities.  The typical actuation on these 
platforms is limited to setting data sampling rate and 
specifying the duty cycling rate of the sensors.   The 
proposed system involves the dynamic tuning of a wide 
range of parameters representing various modes of each 
instrument. For example, for the tower radar, a number of 
parameters such as frequencies, power levels, and 
polarizations could be controlled.   This requires the 
development of a customized actuator for the proposed 
system that will become part of the sensor board and is 
connected to the measurement device. For this development, 
we will leverage the existing Narada board already 
developed by a colleague at the University of Michigan.
  

IV. LABORATORY TEST-BED 
 
The control signals generated by the central coordinator 
need to be conveyed to the sensors via wireless links and 
actuators at the sensor locations. The objective of the 
laboratory test-bed is to provide experimental proof-of-
concept for the actuation of sensors, given the control signal 
and antecedent sensor data that are available to the 
coordinator via wireless links. 
 
We have planned two major phases for the actuation 
experiments (phases A and B). In Phase A, recently 
completed, COTS devices were used for actuation and 
wireless communication. The control feedback loop was 

Figure 6. Field measurement conceptual setup: both remote and in-situ sensors are present, and send data to the coordinator. The coordinator issues 
command signals via the wireless link to actuators at sensor locations, which in turn set sensor measurement parameters. 
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implemented to command a single sensor at a single location 
via an actuation device. The control policy for the 1-D 
problem was successfully integrated with the lab set up and 
used to actuate the sensor at intervals prescribed by the 
control algorithm. 
In Phase B, custom actuation and communication devices 
will be built (possibly using some COTS components). 
Furthermore, in parallel with the control algorithm progress, 
multiple sensors will be included in the demonstration, each 
of which can be controlled by the coordinator. Phase B will 
also include optimization criteria for power management. 
Phase A experiments were in the laboratory only. In Phase 
B, we plan to set up a field-analog experiment. Figure 6 
shows the field experiment concept, where both in-situ and 
remote sensors may be used, each of which will receive 
commands from the coordinator and actuated accordingly. 
Each sensor can in turn send its data back to the coordinator. 
  

V. SUMMARY 
 
The proposed technology for coupling a data assimilation 
framework into a sensor web control system to achieve an 
optimal dynamic sampling strategy is fundamentally new. 
Previous studies related to this topic exist, but have used an 
empirical approach to search for temporal stability of 
network nodes for capturing the mean conditions of the 
observed field [18]-[19]. No previous work has been done to 
implement such dependencies within a control system to 
guide the sampling of a sensor web. 

The novel aspects and benefits of this technology are: 
o It uses a physics-based approach to relate the variations 

of soil moisture to soil texture, terrain, vegetation, and 
meteorological conditions, and hence the decisions on 
weighting the node measurements are solidly tractable, 
regardless of geographic location. 

o It enables, for the first time, a dynamically guided 
sampling strategy for the sensor web by integrating in 
situ data, real-time processing, data assimilation, and an 
optimal control algorithm. The new sampling strategy 
enables representative estimates of the time-varying field 
mean provided by space-based remote sensing assets. 

 
The methodology for data collection and data processing 
described here is also applicable to several other 
technological areas including transportation systems, 
wireless sensor networks, and Mobile Ad hoc Networks. 
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