
Information-Theoretic Methods for Identifying 
Relationships among Climate Variables* 

 
Kevin H. Knuth1,2, Deniz Gencaga1, William B. Rossow3 

1. Department of Physics, University at Albany, Albany NY 12222 
2. Department of Informatics, University at Albany, Albany NY 12222 

3. Department of Electrical Engineering, The City College of New York, NY NY 10031 
 

 

                                                 
* Supported by NASA AIST-QRS-07-0001 

Abstract- Information-theoretic quantities, such as entropy, 
are used to quantify the amount of information a given variable 
provides.  Entropies can be used together to compute the 
mutual information, which quantifies the amount of 
information two variables share.  However, accurately 
estimating these quantities from data is extremely challenging.  
We have developed a set of computational techniques that allow 
one to accurately compute marginal and joint entropies.  These 
algorithms are probabilistic in nature and thus provide 
information on the uncertainty in our estimates, which enable 
us to establish statistical significance of our findings. We 
demonstrate these methods by identifying relations between 
cloud data from the International Satellite Cloud Climatology 
Project (ISCCP) and data from other sources, such as 
equatorial pacific sea surface temperatures (SST).   

I.  INTRODUCTION 

The field of Earth-science is currently in the difficult stage 
of identifying relevant variables.  How do we identify 
candidate variables or indices and ensure that they are 
maximally relevant to the phenomena we wish to describe or 
predict?  To establish relevance between a variable and a 
phenomenon, one needs to demonstrate that the variable 
provides information about the phenomenon.  To quantify 
this, we turn to information theory. 

We have developed a suite of computational tools that 
allow researchers to calculate, from data, an information-
theoretic quantity called entropy, which is critical to 
identifying relationships among climate variables.  Our tools 
estimate entropy along with its associated error bars, the 
latter of which is critical for describing the degree of 
uncertainty in the estimates. This work builds upon our 
previous investigations of optimal binning techniques that 
we had developed for piecewise-constant, histogram-style 
models of the underlying density functions, and is more 
focused on continuous density models based on sums of 
Gaussians and Markov chain Monte Carlo sampling 
techniques.  

II. ENTROPY AND INFORMATION 

We can characterize the behavior of a system X by looking 
at the set of states the system visits as it evolves in time.  If a 
state is visited rarely, we would be surprised to find the 
system there.  We can express the expectation (or lack of 

expectation) to find the system in state x in terms of the 
probability that it can be found in that state, p(x), by 
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This quantity is often called the surprise, since it is large 
for improbable events and small for probable ones.  
Averaging this quantity over all of the possible states of the 
system gives a measure of our expectation of the state of the 
system 
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This quantity is called the Shannon Entropy, or entropy 
for short [1].  It can be thought of as a measure of the 
amount of information we possess about the system.  It is 
usually expressed by rewriting the fraction above using the 
properties of the logarithm 
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If the system states can be described with multiple 
parameters, the entropy can still be computed by averaging 
over all possible states (here it is shown for two subsystems 
X and Y): 
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This is called the joint entropy, since it describes the 
entropy of the states X and Y, which jointly describe the 
system.  One can often think of X and Y as representing 
subsystems of the original system.  In this case, an important 
quantity is the difference of entropies,  
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This is called the Mutual Information (MI) since it 
describes the amount of information that is shared between 
the two subsystems.  If you possess information about 
subsystem X, the mutual information describes how much 
information you also possess about Y.  Thus mutual 



information is useful for quantifying the relevance of 
knowledge about one subsystem to knowledge about another 
subsystem, which is critical for quantifying predictability.  
For this reason, MI is critical in identifying relationships 
across climate variables, and in identifying and selecting a 
set of relevant variables that aid in the prediction of another 
climate variable.  If two climate variables X and Y are 
independent, then 
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and the mutual information (5) is zero.  
 

III. ESTIMATING ENTROPIES 

A. Density Models  
Estimation of these information-theoretic measures from 

data is, at first glance, deceivingly straightforward.  From the 
data one estimates the probability density from which the 
data were sampled.  Then using this probability density, one 
can use the formulae above to estimate the various necessary 
entropies.  Most researchers focus on the biases that are 
introduced in the calculations (which are virtually impossible 
to estimate without prior information) and neglect computing 
error bars on the entropy estimates.  This results in estimates 
with unknown statistical significance.  To accurately 
estimate the associated uncertainties, one must propagate the 
uncertainties in the probability density estimation through 
the equations for the entropy and mutual information.  
Consequently, this procedure relies heavily of estimating 
probability density functions and keeping track of our 
uncertainties.  

Our early efforts focused on piecewise-constant 
(histogram-like) density models [2, 3]; the reason being that 
these models are extremely fast computationally.  While this 
was found to be true, we also found that the constituent 
uniform densities led to small biases in the entropy 
estimates, which are disastrous in higher dimensions.  This is 
important since the mutual information depends on the joint 
entropy, which depends on a two-dimensional probability 
density, and quantities like the transfer entropy [4] depends 
on higher dimensions still. 

Since the main problem with piecewise-constant densities 
was the discrete nature of the bins, we have adopted a 
Mixture of Gaussians model (MoG) where the probability 
density is modeled as a sum of Gaussian densities.  Given a 
set of data, we fit a density function to it based on a sum of 
Gaussians of varying means and standard deviations.   

B. Entropy Estimates from Density Estimates  
With this density function in hand, we can then compute 

the entropy by a standard numeric integration with the 
integral version of equation (3) or (4) above.  However, this 
alone neither provides us with an optimal estimation of the 
entropy nor an estimate of our uncertainty.  To obtain these, 
we need a set of density functions sampled from the 
posterior probability of density functions.  This turns out to 
be extremely easy in the case of piecewise-constant density 
models since the model parameters can be sampled directly 

from a Dirichlet distribution and can be accomplished 
directly without resorting to more sophisticated sampling 
techniques. 

When working with the MoG models, we rely on the new 
Markov chain Monte Carlo (MCMC) algorithm called 
Nested Sampling [5].  By integrating this MCMC algorithm 
with some basic sampling code, which selects representative 
MoG models from the MCMC samples according to the 
posterior probability, we obtain a set of probable density 
function models.   

Once a set of probability density models are obtained from 
the data, we can obtain a set of entropies. Computing the 
entropy for each model and weighting that particular entropy 
calculation by the probability of the model enables us to 
compute the mean entropy and the standard deviation.  Our 
experiments with one-dimensional Gaussian-distributed data 
verifies that this method enables us to accurately estimate 
entropies from data within the error bars 67% of the time in 
the case of piecewise-constant models and 68% of the time 
in the case of MoG models.  As described earlier, in two-
dimensional data sets, the piecewise-constant models result 
in biases in the entropy estimation that do not appear when 
using the MoG models. 

 
IV.  MUTUAL INFORMATION 

We have performed experiments with Gaussian 
distributions and demonstrated that we obtain mutual 
information estimates within the error bars for non-
correlated data sets.  For correlated data sets the estimates 
are within error bars only 24% of the time, which suggests 
that we are underestimating the uncertainties.  One example 
is the case where the correlated data had a true mutual 
information of 0.1438, which we estimated to be 0.1361 ± 
0.0050.  This over-confidence is most likely due to the fact 
that the MI is a positive quantity (bounded from below); 
although it could be that our 2-D integration scheme is not 
sufficiently precise.  These issues continue to be 
investigated. 

We now demonstrate the utility of these techniques by 
examining the MI between interesting climate variables.  We 
consider the percent cloud cover as subsystem X. These data 
were obtained from the International Satellite Cloud 
Climatology Project (ISCCP) climate summary product C2 
[5, 6], and consist of monthly averages of percent cloud 
cover resulting in a time-series of 198 months of 6596 equal-
area pixels each with side length of 280 km. The percent 
cloud cover data at each pixel can be thought of as a time 
series of measurements of subsystem X: X1,X2, . . . , X6596. 
The other data set was chosen to be the Cold Tongue Index 
(CTI), which describes the sea surface temperature 
anomalies in the eastern equatorial Pacific Ocean (6N-6S, 
180-90W) [7]. These anomalies are indicative of the El Niño 
Southern Oscillation (ENSO) [8, 9]. These data, which 
consist of the set of 198 monthly values of CTI, constitute 
the subsystem Y.  The data X and Y were chosen to 
correspond in time. 

The MI was computed between the cloud cover at pixel 1 



(X1) and the CTI (Y), and pixel 2 (X2) and the CTI (Y), and so 
on by using (12).  This enables us to generate a global map 
of 6596 mutual information calculations, which indicates the 
relationship between the Cold Tongue Index (CTI) and 
percent cloud cover across the globe.   

Fig. 1 shows the mutual information as estimated using 
piecewise-constant density models.  Below the map is a bar 
graph that indicates the mutual information estimates for 
sites along the equator.  The error bars indicate the 
uncertainties in our estimates, which can be used to identify 
statistically significant regions and eliminate those that are 
not significant.  Fig. 2 shows the mutual information map 
with only the regions with that have two-sigma significance 
and greater.  From this map, one can see that the cloud cover 
affected by the sea surface temperature (SST) variations lies 
mainly in the equatorial Pacific, along with an isolated area 
in Indonesia. The highlighted areas in the Indian longitudes 
are known artifacts of satellite coverage. 

Fig. 3 shows the same map, but estimated using the 
Mixture of Gaussian model.  While it is known that the MoG 

model will produce more accurate mutual information 
estimates, we are confident that the uncertainties are 
underestimated.  For this reason, the two-sigma cut-off still 
permits a large amount of noise in the map.  However, 
despite this noise, more structure is revealed.  For instance, 
note the effect on the inter-tropical convection zones across 
South America and Africa.  It is known that seasonality also 
affects the cloud cover in these regions [10], so it is unclear 
as to what degree these high mutual information values are 
due to the fact that both ENSO and the percent cloud cover 
are functions of seasonality, or whether ENSO is modulating 
the percent cloud cover in these areas.  To establish this, we 
would need to move on to higher-order informations, such as 
transfer entropy [4]. 
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Figure 1.  The top shows a Mutual Information (MI) map 
of Cloud Cover vs. Eastern Equatorial Pacific CTI, which 
indexes ENSO, generated using a piecewise-constant 
density model.  The bottom shows the MI between CTI 
and Cloud Cover along the equator.  The error bars, 
enable us to identify statistically significant 
dependencies. 

Figure 2. A thresholded version of the map in Fig. 1 of 
the effect of ENSO on cloud cover including only pixels 
that exhibit statistical significance of at least two standard 
deviations. 

Figure 3. A Mutual Information map of the ENSO SST 
and ISCCP cloud cover data using the Mixture of 
Gaussians density model.  At the two standard deviation 
level of significance, more regions are seen to be 
related, such as the inter-tropical convection zones. 


