Title of Presentation: Some First Results from the UAVSAR Instrument

Primary (Corresponding) Author: Scott Hensley (Cathleen Jones)

Organization of Primary Author: Jet Propulsion Lab

Co-Authors: Scott Hensley, Kevin Wheeler, Greg Sadowy, Cathleen Jones, Scott Shaffer, Howard Zebker,Tim Miller,Brandon Heavey,Ernie Chuang,Roger Chao,Ken Vines, Kouji Nishimoto, Jack Prater, Bruce Carrico, Neil Chamberlain, Joanne Shimada, Marc Simard, Bruce Chapman, Ron Muellerschoen, Charles Le, Thierry Michel, Gary Hamilto, David Robison, Greg Neumann, Robert Meyer, Jim Granger, Paul Rosen, Dennis Flower, Robert Smith

Abstract: The UAVSAR instrument, employing an L-band actively electronically scanned antenna, had its genesis in the ESTO Instrument Incubator Program and after 3 years of development has begun collecting engineering and science data. System design was motivated by solid Earth applications where repeat pass radar interferometry can be used to measure subtle deformation of the surface, however flexibility and extensibility to support other applications were also major design drivers. In fact a Ka-band single-pass radar interferometer for making high precision topographic maps of ice sheets is being developed based to a large extent on components of the UAVSAR L-band radar. By designing the radar to be housed in an external unpressurized pod, it has the potential to be readily ported to many platforms. Initial testing is being carried out with the NASA Gulfstream III aircraft, which has been modified to accommodate the radar pod and has been equipped with precision autopilot capability developed by NASA Dryden Flight Research Center. With this the aircraft can fly within a 10 m diameter tube on any specified trajectory necessary for repeat-pass radar interferometric applications. To maintain the required pointing for repeat-pass interferometric applications we have employed an actively scanned antenna steered using INU measurement data. This paper presents a brief overview of the radar instrument and some of the data obtained from the system.