
Spatiotemporal Bayesian Model for Predicting the Occurrence of Surface Objects  
 

Yang Cai1, Karl Fu1, Xavier Boutonnier1, Rafael Franco1, Daniel Chung1, 
Richard Stumpf2, Timothy Wynne2, Mitchell Tomlison2 

                         1 Carnegie Mellon University, ycai@cmu.edu  
                                      2 NOAA, richard.stumpf@noaa.gov 

 
 
     Abstract - In this paper, we present a spatiotemporal 
Bayesian model for predicting the occurrence of surface objects. 
In the model, we divide a space into a set of two-dimensional lots 
where each lot has a set of states and historical data. The model 
is tested with the Karenia brevis cell counts and other data from 
the coast of Florida for eight years, from 1997 to 2002. From 
5,000 random samples, we reach an about 87.5% of chance to 
correctly predict the presence of a toxic cell count level at a 
specified location. However, the false alarm rate is 51.95%, 
which means that a non-toxic cell count level is incorrectly 
classified to be a toxic. To further improve the accuracy, we will 
incorporate the wind and the chlorophyll anomaly data into the 
existing model.  
 
 

I.  INTRODUCTION 
 
     Remote sensing databases, such as SeaWiFS and MODIS, 
have been used as means of monitoring the spatiotemporal 
dynamics of ocean objects, such as harmful algal blooms 
(HAB) and river plumes in the presence of coastal areas. 
However, the current HAB computational models are limited 
as off-line analyses that have not been seamlessly integrated 
into day-to-day field applications yet. There is a need for 
advanced computing techniques that could be applied to the 
automatic detection or tracking of harmful objects, as well as 
to the physiological status or taxonomic classification of 
bloom organisms, in near-shore coastal environments, as well 
as in the open ocean. Evaluating bloom detection techniques 
has a critical dependence at some level of visual analysis 
(Tomlinson et al., 2004).  To determine chlorophyll or other 
cardinal property, multiple samples and parametric statistics 
are appropriate.  For nominal properties, such as bloom type, 
each bloom must be treated as a single unit, regardless of the 
number of samples for validation. This is a non-parametric 
problem that cannot use simple pixel statistics, as it requires 
identifying contiguous blooms.  
    The spatiotemporal data mining involves object tracking 
and modeling, which extract patterns from multiple data 
streams, such as multi-spectrum satellite images, in-situ cell 
counts, weather data, and qualitative and quantitative models. 
The problems in predicting the occurrence of surface objects 
include 1) multi-resolution sensory fusion for satellite images 
and cell counts, 2) interaction of external forces such as wind 
and coastal lines with intrinsic properties such as shape and 
concentration, 3) multi-physics modeling that fuses 
biological, chemical and fluid dynamics.  

    Problems in spatiotemporal data-mining arise while 
classifying data and predicting future events. Current 
solutions to the problem include Neural Networks and 
Physical Modeling. Neural Networks arbitrarily fit the data 
and are able to predict and classify only if conditions are the 
same as those in the training set. Neural networks also fail at 
predicting and classifying data if the training set does not 
cover the range of the input data. Complex and sophisticated 
physical modeling are able to predict and classify to extreme 
accuracy if all the parameters are calibrated. The common 
problem with physical modeling is that there is not enough 
relevant data to calibrate all the parameters.    
     In this paper, we present the progress in our project 
(AIST-QRS-04-3031) “Spatiotemporal Data Mining for 
Monitoring and Tracking Ocean Objects,” sponsored by 
NASA ESTO-AIST program. The objective of the project is 
to predicate conditions favorable for an anomalous event to 
occur where targets have not been observed. We have 
developed a spatiotemporal Bayesian model for predicting 
the occurrence of ocean surface objects. Our case study is 
based on the HAB (harmful algal blooms) database off the 
coast of Florida. At the current stage, we only use the cell 
count data and the geographical information and occurrence 
time as historical data. In the near future, we will use more 
variables, including the satellite images of chlorophyll and 
anomaly from NASA and data regarding the HAB (salt 
concentration, wind, cell count, and time).  
 

II. SPATIOTEMPORAL BAYESIAN MODEL 
 
Naïve Bayesian inference models have been developed for 
decades. It is so far the most popular statistical method for 
prediction. The model has following advantages: 

• Incremental:  the more evidences, the more robust 
prediction. 

• Linear speed:  O(N) process where N is the number 
of training sets. 

• Recursion: the model can update new evidence by 
recursion. 

    There are many dialects of the Bayesian model. One of the 
recent additions is the Spatial Bayesian algorithm [20] that 
has been used in geographical information retrieval and 
ecological studies. Spatiotemporal Bayesian inference [9] is 
developed for dipole analysis of neuroimaging data. 
However, there is no a common algorithm for many different 
applications.  In our case, we have a long period of data but 
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very sparse in time and space due to the limitation of data 
acquisition or the noises generated from the data collection 
process, e.g. the data under a cloud in a satellite image would 
be missing. Therefore, it is necessary to generalize our 
problem to be a two-dimensional data mining problem, where 
the interested objects occur on the surface only. In addition, 
we focus on how to formulate the spatial and temporal 
information into the rigid Bayesian model and also draw the 
links between the environmental factors and the internal 
variables.  
 
2.1 Spatial Bayesian Prediction Definitions 
 
   Given a lot with },...,2,1,0{ mx∈ , },...,2,1,0{ ny∈ as shown 
in Figure 1, we can divide a 2-D space into a grid of lots. 
 

(0,0) (1,0) (2,0) … (m,0) 

(0,1) (1,1) (2,1) … (m,1) 

(0,2) (1,2) (2,2) … (m,2) 

… … … … … 

(0,n) (1,n) (2,n) … (m,n) 

 
Fig.1. Definition of the 2-D lots 

 
    Let the upper left corner of lot (0,0) and the lower right 
corner of the lot (m, n) enclose all of the data. Assume j is 
one of 2 possible states (toxic or non-toxic). Let Vv yx

j ∈,  

represent a possible state of lot (x,y). The ),,( tyxv will be the 
predicted state of lot (x,y) based on the largest probability of 
all possible states of Vv yx

j ∈, . The spatiotemporal Bayesian 

prediction equation is described as below: 
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j
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    In many cases, there are a lot of evidences such as wind, 
salinity, and other variables in a grid. Assume is evidences ek  
(k = 1,...i). The prediction equation (1) is modified to 
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3.2 Spatial Prediction Confidence 
 
    A Spatiotemporal Bayesian Prediction of the lot (x,y) at 
time t is ),,( tyxv . However, after the prediction, a 

confidence level of the prediction may be needed for 
purposes such as visualization. 
    Let the confidence value of the prediction ),,( tyxv of lot 
(x,y) at time t be denoted as ),,( tyxC . The confidence level 
of a prediction is the Bayesian probability of state j in which 
the argument in the equation (2) is maxed. So ),,( tyxC is 
given by the equation 

),,(
)|()|()|()(

),,(
tyxP
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    The equation above is derived using eq. (2) divided by the 
independent probability of all the evidence presented. Figure 
2 shows an example of the visualization result of the 
confidence probability in form of an iso-surface, where all 
the points on the surface have P= 0.5. The iso-surface 
illustrates the spatiotemporal movement pattern of the 
interested object at a defined confidence level.  
 

 
 

Fig.2. An iso-surface of the probability of the predicted                         
spatiotemporal dynamics  
 
 

 
III. PREDICTION OF THE OCCURANCE OF HAB 

 
    The data provided for the HAB case study by NASA and 
NOAA are eight years of satellite images, salt concentration, 
wind, ocean current, and cell count, from 1975 to 2002. The 
data come from different stations on the ocean, so its latitude 
and longitude are the same at one station. 
    Initially we have 12,616 sets of training data. Each set is 
guaranteed to have to have a date, latitude, longitude, and cell 
count information which are guaranteed to be present. In our 
test, we randomly removed 3,000 samples, one at a time, 
from the training set, and tested it. By using our 
Spatiotemporal Bayesian Prediction model, we calculate the 
probability of HAB being toxic (denoted T , cell count ≥ 



5,000) and the probability that it is not toxic (denoted N , 
cell count < 5,000). After each test, we put the sample back 
into the database. 
    For example, after removing an entry with time t , latitude 
x , longitude y , and cell count C ,  we find the probability 
of toxic and non-toxic using Ttyxv =),,(  if, 

)000,5|()000,5()000,5|()000,5( <<>≥≥ CtPCPCtPCP , 
otherwise Ntyxv =),,( .  
    When calculating the probability of t given an event, a 15 
day period span on both sides of t is also incorporated into 
the prediction to avoid sparse data. 
 

 
 

Fig. 2. Inputs and outputs of the Spatiotemporal Bayesian     
Model (We only use the first four variables at this moment)  

 
 
    In our case, we have sparse data that yield accuracy 
problems, i.e. Nc is small. Therefore, we used follow formula 

to estimate ( | ) c
k j

v

N mpP e v
N m

+
=

+
, where Nc is the number of 

training instances with evidence ek and state vj  and m is the 
constant to enlarge the sample size, p is the prior estimate of 
the probability such that p = 1/r, where r is number of values 
that ek can take, if we assume the prior is uniform. 
    The inputs into the model are time, latitude, and longitude. 
The output is the probability the HAB is present, and the 
probability the HAB is not present. The two probabilities are 
compared to each other to determine the actual prediction. 
For example, if probability of HAB present is greater than the 
probability of HAB not present, then the prediction result is 
present. 
 

IV. ANALYSIS OF THE RESULTS 
 
    Using the method described above, of all the 5,000 random 
samples that had toxic cell count level, 87.0% of the 
predictions of the toxic level were accurate; and of all the 
5,000 samples that had a non-toxic cell count level, 51.9% 
were classified as the toxic level. Therefore, the false alarm 
rate is rather high at this moment. Table I and II show the 
detailed results from two trials for each case. 

 
TABLE I. CORRECT PREDICTION OF  TOXIC 

 
TABLE II. FALSE ALARM RATE (NON-TOXIC AS TOXIC) 

 
    From the preliminary results, it is obvious that we need 
more multimodal variables to make a more accurate 
prediction. At the current stage, we mainly use the 
spatiotemporal cell-count historical data to make the 
prediction. We are currently working on incorporating the 
anomaly and chlorophyll channel data from SeaWiFS 
satellite images into the prediction model. As the reference 
[19] shows, there is a linear correlation between the 
chlorophyll anomaly in the images and Karenia brevis 
blooms. Therefore, it would significantly increase the 
accuracy in prediction. The movement of the HABs is also 
correlated with the wind data. We are incorporating the wind 
database into our prediction model. Furthermore, we would 
explore other potential correlated variables such as 
temperature and salinity.  
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Fig. 3.  Number of data point vs. CPU time 
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Fig. 4. Number of evidences vs. CPU time 

Trial Correct/Total samples Accuracy 
1 1695/1938 87.5% 
2 1687/1927 87.5% 

Average - 87.5% 

Trial Correct/Total samples Accuracy 
1 1598/3062 52.2% 
2 1589/3073 51.7% 

Average - 51.95% 



     We investigated the computational performance of the 
model and found the near linear relationship between the 
CPU time and number of data points or number of pieces of 
evidences. This proves that the model is ‘cheap’ in terms of 
computing resources. 

 
V. CONCLUSIONS 

 
    In this paper, we present a Spatiotemporal Bayesian model 
for predicting the occurrence of surface objects. In the model, 
we divide a space into a set of two-dimensional lots where 
each lot has a set of states and historical data.  
    The model is tested with Karenia Brevis cell counts and 
other data from Florida coast for 40 years. Using this method, 
of all the random samples that had toxic cell count level, 
87.0% of the predictions were accurate; However, the false 
alarm rate is 51.95%, which is rather high.  
    From our computational performance tests, we found that 
there is a near linear relationship between the CPU time and 
number of data points or number of evidences. This proves 
that the model is ‘cheap’ in terms of computing resources. 
    Further investigation includes incorporating chlorophyll 
anomaly data from satellite images, along with wind data and 
recursive learning. 
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