
Cross Functional Design Tools for Radiation Mitigation and
Power Optimization of FPGA Circuits

Matthew French1, Paul Graham2, Michael Wirthlin3, and Li Wang1

1University of Southern California, Information Sciences Institute, Arlington, VA
2Los Alamos National Laboratory, Los Alamos, NM

3Brigham Young University, Proto, UT

Abstract- The Reconfigurable Hardware in Orbit (RHinO)
project is focused on creating a set of design tools that facilitate
and automate design techniques for reconfigurable computing
in space, using SRAM-based field-programmable-gate-array
(FPGA) technology. In the final year of the project, design tools
that have been created to visualize and analyze an FPGA circuit
for radiation weaknesses and power inefficiencies were
validated and verified in radiation testing and power
measurement testbeds. For radiation, a single event Upset
(SEU) emulator, persistence analysis and mitigation tool, and a
half-latch removal tool for Xilinx Virtex-II devices have been
created. For power, dynamic power visualization, analysis, and
optimization tools have been completed. In this paper, the final
combined test results are presented for an image convolution
test circuit with different levels of radiation mitigation and
power optimization.

I. INTRODUCTION

SRAM-based FPGAs have become a promising solution
to processing on space-based payloads. They offer features
that anti-fuse FPGAs do not, such as reprogrammability,
embedded multipliers, and embedded processors, while also
offering 5-10x more logic gates. These features allow
SRAM-based FPGAs to address resource multiplexing, fault
tolerance, mission obsolescence and design flaws in on-orbit
payloads that directly impact design cost and mission risk,
while also providing better processing performance.
However, a significant barrier to developing space-ready
SRAM-based FPGA applications is the difficulty in
designing for the rigorous constraints mandated by the
operational environment. Two main issues limit the use of
conventional FPGAs to such designs: 1) SRAM-based
FPGAs are sensitive to radiation effects, namely, total
ionizing dose (TID), single event latchup (SEL), and single-
event-upsets (SEUs), because of their high proportion of
memory structures; and 2) SRAM-based FPGAs designs
tools optimize for throughput at the expense of power.

 Current foundry process technology for Xilinx FPGA
devices provides enough tolerance for a large number of ESE
orbits for total dose and latch up (no destructive latchups
have been reported), however the SEU presence is a major
design/operational issue. The large amount of static memory
within SRAM-based FPGAs, such as look-up tables, routing
switch tables, etc., makes them sensitive to SEUs. While
traditional hardware redundancy techniques improve the
reliability of FPGA designs (at the expense of increases in
hardware, power, etc.), novel FPGA-specific techniques are
required to address the unique vulnerabilities of SRAM-
based FPGA architectures, while incurring less hardware
overhead. Therefore, design automation tools evaluating and
assessing the reliability of FPGA designs, inserting

appropriate redundant hardware, and manipulating the low-
level structures of the FPGA design are needed for robust
operation and SEU and latch-up tolerance.

Available FPGA synthesis tools optimize for speed or
area, but not for real-time power consumption. Limited
power estimation tools are available, such as Xilinx’s
XPower; however, these are difficult to use and have limited
utility to the actual FPGA design process. Accurate power
estimates are only achievable after completing an entire
iteration of the design cycle and provide no power
optimization guidance. To make effective use of FPGAs in
space, tools providing accurate power estimation and
dynamic power optimization, operating on the FPGA’s gate
logic or on individual configurable logic blocks (CLBs), are
needed; specifically: 1) to monitor power consumption early
in the design process at a useful granularity (e.g., at CLB);
2) to aid in the design analysis that captures data-dependent
transients as well as overall power consumption; and 3) to
perform automated dynamic power optimization.

Both the radiation-induced and power consumption
effects are currently handled through manual intervention or,
at best, through ad-hoc in-house tools. There is a real need in
the community for validated design tool automation to raise
the technology readiness level (TRL) of SRAM-based FGPA
user designs. The RHinO project is leveraging an
established, open-source tool-suite that accepts output from
commercially available synthesis tools to create tools that
allow the developer of a space-based FPGA application to
automatically analyze and optimize a Xilinx Virtex II FPGA
circuit for both space radiation effects and power utilization.

 In the final year of this effort, the space radiation and
power tools were validated and verified by running a test
circuit through the complete tool flow and testing in the
relevant radiation and power measurement testbeds. The
remainder of this paper sequentially introduces the relevant
tools in design flow chain. First the JHDL tool suite and
extensions made to it for the RHinO toolkit are discussed
section II. The SEU effects tools are discussed in Section III,
and power tools are discussed in Section IV. Section V
presents the testing results of the testbench circuit from both
a radiation and power perspective. Section VI will
summarize the progress and draw conclusions.

II. The JHDL Tool Suite

A. Background

As outlined in [1], the RHinO tools suite is built upon the
open-sourced JHDL [2] FPGA design environment. The tool
suite, shown in Figure 1, contains a digital circuit simulator,

a circuit hierarchy browser, FPGA library primitives, and
tools for exporting user designs into EDIF and VHDL. JHDL
provides an open API into the circuit structure to facilitate
the creation of application-specific design aids for viewing,
revising, manipulating, or interacting with a user design. The
integrated design aids, circuit API, and flexibility of JHDL
make it an ideal tool for aiding the development of radiation-
hardened and power-aware space-based FPGA designs. A
variety of application-specific tools can be created to analyze
and improve the reliability of FPGA circuits.

Figure 1. JHDL Tool Suite

Under this effort, RHinO is devising new features for
JHDL, specific to space environments, which would enable
SRAM-based FPGA payload developers to confidently
manage the limiting on-board spacecraft design constraints
for power, radiation effects, fault-tolerance, reliability, etc. A
key goal of the effort is interoperation with existing
commercial tool flows based on VHDL/Verilog, through
seamless JHDL-EDIF translation. Alternatively, the user can
work entirely in the JHDL design environment, using the
RHinO power and SEU tools in concert with the normal
JHDL features for simulation, netlisting, and runtime control,
all within a single user interface.
B. RHinO Enhancements
 During this project the JHDL infrastructure was enhanced
 and continually refined to support the desired SEU
mitigation and power tool functionality. A GUI event API
was developed to support intercommunication and
interoperability with other modules, or tools that could be
dropped into JHDL. As shown in Figure 2, this has led to the
development of multiple tool modules being able to leverage
the core JHDL capabilities.
 Considerable effort was spent enhancing the EDIF netlist
tool, originally created to support importing 3rd party IP. The
EDIF netlist parser and data structure software provides the
central design database for both the RHinO power analysis
tools and RHinO design reliability and mitigation tools.
These tools provide two important capabilities for the RHinO
tool suite. First, these tools provide the capability of
importing an FPGA design created with a third-party tool
into the RHinO infrastructure. Second, these tools provide a
consistent circuit database for each of the tools created in the
RHinO project.

The relationship between the EDIF tools and other
RHinO tools is shown below in Figure 2. An FPGA design is
loaded into the RHinO suite through the EDIF parser and

into the EDIF data structure. At this point, the design can be
manipulated or analyzed using one of several RHinO tool
components. For example, power estimates of the design can
be made by using the JHDL/RHinO power estimator tool
chain. In this mode, a dynamic simulation of the design is
created in JHDL to obtain the activity rates of design
components and nets. The power estimation and viewer tools
are available for browsing and viewing the results of this
design simulation. Alternatively, the design reliability
analysis tools may be invoked from the EDIF data structure.
With these tools, the reliability of the design can be analyzed
and presented to the user.

A major goal of the final year of this project for BYU
was to strengthen the community of users of the EDIF tool
suite. Several tasks were completed to address this goal.
First, the web-site for hosting the EDIF code has been
expanded to include more documentation and distribution
information. This web site, http://reliability.ee.byu.edu/edif/,
is the repository for all of the EDIF community resources.
Second, an online EDIF forum was created to provide a way
to share information among the EDIF users. Third, the
distribution process was simplified to provide a variety of
distribution options at each distribution checkpoint. Fourth,
several API examples were created and posted on this web
site. With these new resources, we expect that the EDIF
community will continue to grow and encourage more cross
organizational collaboration.

Figure 2. RHinO Tool Infrastructure

III. SEU Radiation Effects

A. Background
 To further advance the TRL level of Virtex-II FPGAs for
space applications, the RHinO project has a goal of
improving the reliability of user designs in the presence of
SEUs. SEUs are the main radiation concern since these
FPGAs have been shown to have acceptable tolerance to TID
as well as to SEL for low earth orbits (LEO). SEUs can
occur in several memory structures on these SRAM-based
FPGAs [3 4], namely in the support and control logic, the
user design state, the programming memory (often called the
configuration memory), and half-latches. Upsets in the
support and control logic can have a range of effects, from
fairly benign to totally erasing the contents of the FPGA

configuration memory. Upsets in the user design state, such
as in flip-flops and on-chip memories, may cause faults to
occur in the user design's operation, while upsets in the
configuration memory may change the user's design directly
by changing the connectivity of logic or changing the logic
functions themselves.

This year, the SEU radiation research focused on four
main areas: (1) developing a FPGA design analysis to
provide early feedback on the reliability of a given design
after HDL synthesis (2) validating a low-cost approach to
provide design robustness through selective triple-modular
redundancy (TMR) using the BLTmr tool [5] to reduce error
persistence, (3) additional characterization of multi-bit upset
(MBU) events due to single ion strikes in multiple device
families, and (4) additional characterization of half-latch
SEUs in Virtex-II. The remaining portion of this section will
discuss each of these aspects in the order they appear in the
RHinO tool chain depicted in Figure 1.

B. STAR-C and Dynamic SEU Cross-section Analysis
Until now, there have been relatively few ways to

estimate the SEU sensitivity of user FPGA designs. At least
for methods are possible. First is the engineering “rule of
thumb” that states that a design will pessimistically have 1/10
to 1/5 of the configuration bitstream’s static cross-section.
This method is very imprecise, not very inciteful, and may
lead to over or under engineering of space systems.

The second approach, SEU emulation in hardware (like
with V2SE), provides a much tighter bound on the actual
cross-section. But this approach requires the final placed-
and-routed design as well as the hardware setup to actually
perform the tests. Further, it may require a significant
number of test runs to get very good statistics on the total
sensitivity of designs since many errors can be data and
operation dependent.

The third approach involves using the Xilinx SEUPPI
tool for determing the worst case number of configuration
bitstream bits that can affect your design. Past experience
has demonstrated that this really is worst case, especially,
when SEUPPI has no way of account for the redundancy in
the design. Again, you must also have the final placed and
routed design available for the analysis.

The fourth, and most common, approach is accelerator
testing. Of course, this can be quite costly when trying to
determine the precise sentivities of a design since it may be
hard to pinpoint the source of a problem since faults are
injected randomly and sometimes in unobservable portions
of the chip. On the other hand, radiation testing is still a
good sanity check.

All of these solutions have their limitations and most are
hard to correlate back to the original design. During the last
half of the project, we have been developing a tool that can
perform SEU cross-section analysis of designs based on
analysis of the designs’ EDIF. The tool, Scalable Tool for
the Analysis of Reliable Circuits (STAR-C), was originally
developed for analyzing the reliability of nano-scale
computing systems. Though not originally a part of the
RHinO project, STAR-C is actually based on the same EDIF

and JHDL tools that the power analysis work has used and
helped to develop.

For the RHinO project, STAR-C has been modified to
estimate the number of configuration bits that cause single-
point failures in designs. Basically, the tool has a
characterized library describing the potential sensitivities of
individual FPGA resources. STAR-C combines this
knowledge with a knowledge of the effectiveness of TMR in
the circuit to calculate the number of bits in the unmitigated
portion of the design. Currently, the tool can analyze
NMR/TMR as well as unmitigated circuits for the SEU
cross-sections of their logic and memory resources.

Future work on the tool includes efforts to better model
the SEU sensitivities of the routing network and to provide
designers with the ability to better analyze selective parts of
highly redundant designs. Further, we would like to add
better visualization capabilities so that designers can find

“reliability hot-spots” in their designs.

C. BLTMR for SEU Mitigation
 In Figure 1, after reliability estimation is performed with
the STAR-C tool, mitigation techniques can be implemented
using the BLTmr tool. TMR can require greater than a three
times increase in the amount of logic, I/O and memory used
for a design, especially, when considering the costs of
voting. This significant resource cost also affects the speed
of the design and the size of the chip and/or algorithms that
can be used in the system.

As an alternative to this costly approach, we have been
researching a technique that prioritizes the design
components that are mitigated so that the “most important”
components are mitigated first and then, if space allows,
other components may also be mitigated. In our case, we
have placed a priority on those circuit elements that, if
disturbed via an SEU, will remain in an error state for an
extended period of time despite scrubbing of the FPGA’s
programming data (or configuration bitstream)—in other
words, we are targeting user circuit structures that experience
error persistence. These circuits are primarily circuits with
feedback, such as finite state machines and infinite-impulse
response filters. By emphasizing these feedback structures,

Architecture Model
SER

Model
Yield
Model

Circuit Model

Transistor
Size

Transistor
Size,

Geographic
Location

FPGA

EDIF Circuit

Reliability
Or

Failure Rate

Figure 3. STAR-C Analysis Tool

we first reduce the portions of the circuit that would require a
circuit reset to bring the circuit back to a “normal” operating
state and then focus on portions of the circuit that cause more
temporary (or non-persistent) error conditions.
 The BLTmr tool was developed as a proof-of-concept
tool that allows a designer to choose the level of mitigation
that is required or desired for a given design, using selective,
partial TMR and up to full TMR to provide the requested
result while balancing resource and reliability constraints.
Originally developed by BYU and LANL for the Xilinx
Virtex series of FPGAs, the BLTmr tool was ported to
support Virtex-II for the RHinO project. This porting effort
involved the creation of an architectural independent layer
and architectural specific layers for both the Virtex and
Virtex-II architectures. With this architectural independent
layer, porting this tool to other architectures should be
relatively straight forward. One of the most important
improvements was the ability to estimate the device
utilization of the FPGA during the partial TMR process.
Device utilization estimates are essential for deciding how
much TMR to apply for a given design. These estimates,
however, are difficult to make at the EDIF level as the
technology specific mapping has not taken place. A variety
of tool options are provided to allow the user to experiment
and control this estimation process. The BLTmr tool is now
able to automatically apply partial TMR to any given design
in a way that fully utilizes the FPGA resources.

 The current version (0.1.2) of the tool allows the
designer to select the mitigation approach in several flexible
ways, including: (1) The designer can select a certain
utilization level of a given FPGA device, using partial TMR
as appropriate to maximize design reliability for that
utilization level; (2) the designer can instruct the tool to
mitigate (a) the feedback portions of the circuit, (b) the input
cone of logic for these feedback regions, (c) the output logic
of the feedback, (d) or various combinations of the three; and
(3) the designer can select to fully TMR the design.
 An evaluation [5] of this technique using the original
Virtex family of FPGAs indicated for a significant digital
signal processing (DSP) design that a 40% increase in slice
utilization through partial TMR resulted in a 100x decrease
in the number of configuration bits that can cause persistent
output errors, leading to a 90x increase in the mean time
before failure (MTBF) of the design in a Global Positioning
System satellite (GPS) orbit1. Further, several levels of costs
and mitigation were possible. To achieve a similar level of
MTBF improvement for a design that had configuration bits
that would only cause persistent errors required full TMR,
requiring a 370% increase in slice utilization. The validation
of this tool on the testbench circuits is discussed further in
the Results section.

D. Multi-bit Upsets in SRAM FPGAs
Multi-bit upsets (MBUs) due to single event are becoming
increasing common as the critical stored charged in memory

1 Using the following models: AP-8 Solar Minimum, JPL
Solar Proton Quiet, and CREME96 Solar Minimum

elements decreases with decreased CMOS transistor feature
sizes and with the increased transistor densities due to these
same decreased feature sizes. With the increased probability
of such events, the probability of defeating SEU mitigation
schemes increases for many techniques, including simple
error control coding and even TMR. Our work with
characterizing MBUs has been a step toward understanding
the vulnerabilities of TMR due to MBUs.

Previously, we reported on proton radiation results for
Virtex-II and other devices. For Virtex-II, 63-MeV proton
radiation produces a multi-bit event about 1% of the time
while, for the original Virtex devices, MBUs account for
only 0.04% of SEU events. Additional work has been done
to characterize Virtex-4 for MBUs for 63 MeV protons,
demonstrating that Virtex-4 continues the trend for
increasing sensitivity to MBUs, experiencing an MBU about
3% of the time for SEU events on an XC4VLX25 and only
2.2% of the time on the XC4VSX35.

Additionally, considerably more data has been taken for
Virtex-4 with regard to heavy-ions and MBUs. Figure 4
illustrates that, as expected, the trend toward more MBU
susceptibility for small-featured CMOS devices continues,
with MBUs approaching 50% of all events for Virtex-4 at an
LET of about 57 MeV/mg/cm2.

Additionally, we have started to quantify the effects of
incidence angle of MBUs and have seen with Virtex-4 that
changing the angle of incidence from 0 to 60 degrees can
increase the percentage of MBUs by factors of 4.5-6
depending on whether the ions are traversing adjacent CLB
columns or traveling down a single CLB column,
respectively. Similar MBU angle data needs to be collected
for Virtex-II to understand the effects.

We have developed Virtex and Virtex-II SEU emulators
that emulate the effects of the most common MBU events—
2-bit events. Through improvements over the last year, the
V2SE can now inject all adjacent 2-bit MBUs for designs,
requiring only about four times the time required to do all
single bit upsets. We have also recently developed a few
ways of emulating triplicated clocks and resets for the V2SE
so we can more easily understand the effects of single-bit and
multi-bit upsets on TMR designs. Because of this progress,

Figure 4. Percentage of MBU Events vs. Effective

LET for Four FPGA Generations

we are only just now ready to perform a significant amount
of SEU emulation to determine the real effects of MBUs on
actual user FPGA designs.

In summary, MBUs are becoming increasingly more
common in Xilinx SRAM FPGAs due to using ever
decreasing CMOS feature sizes. We have yet to see the
MBU percentage curves saturate vs. LET and at LETs near
60 MeV/mg/cm2, more than 35% of all events appear to be
MBU events. Additional work is needed to take this
information and apply it to actual FPGA designs, including a
significant number of fault-injection experiments using the
V2SE.

C. Half-Latch Mitigation
To meet the goals for automated SEU mitigation of

Virtex-II user designs, the V2SE was employed in validating
the RadDRC-II tool, which was developed to eliminate half-
latch SEU sensitivities from user FPGA designs. Unlike the
results of using SEU emulation for Virtex, SEU emulation
for Virtex-II does not seem to upset half-latches as
frequently. In fact, there was no noticeable difference
between unmitigated Virtex-II designs and those mitigated
by RadDRC-II.

Both we and the Xilinx Radiation Test Consortium
(XRTC) have done additional radiation testing to determine
the effectiveness of half-latch SEU mitigation for Virtex-II.
The testing by both organizations appears to confirm that the
effect of half-latches on Virtex-II designs is significantly
smaller than with the original Virtex FPGAs. In fact, no
noticeable difference was detected for mitigated and
unmitigated designs that effectively filled the entire FPGAs
with a shift register when testing them at Crocker Nuclear
Laboratory with 63 MeV protons. In the process, some
“lock-up” like events for the designs did occur when the
configuration bitstream was fine and the designs were reset,
but with a cross-section of 4.16x10-13 cm2 per device, these
are not likely to be the half-latch SEU events seen with
Virtex. The XRTC have seen similar results, noticing that
half-latches appear to recover quickly from SEUs (frequently
<< 1s).

In summary, half-latch mitigation does not appear to
provide a significant level of robustness to designs in the
tests conducted so far. However, there may be cases were
replacing half-latches with constants directly controlled by
the configuration bitstream may still be desirable—
especially, when a designer wants to reduce the number of
“undetectable” circuit interruptions. Still, the need for half-
latch mitigation appears to be somewhat debatable at this
point.

IV. Power
A. Background

While SRAM-based FPGAs are widely used in embedded
systems and handheld devices because of their short design
cycles, and growing performances, the power consumption
remains a concern. The existing COTS power tools, such as
Xilinx’s XPower, have limited functionality, and are difficult
for users to extract information for power optimization. The

goal of the power tools we introduce here is to yield
immediate results on current devices and interoperate with
COTS CAD tools. Many FPGA power reduction approaches
have been introduced in previous works by other researchers
[6, 7, 8], such as low-power VLSI design, LUT-based
mapping, glitch reduction, and leakage power minimization.
All these approaches address the power issue by either
changing the FPGA architecture, or changing the original
circuit design. The power optimization methodology
developed under this program distinguishes itself from the
others by not changing the functionality of the circuit, in
order to preserve desired radiation fault mitigation circuit
alterations, such as TMR or half-latch removal. These novel
power optimization techniques convert power optimization
goals into constraints compliant with throughput-based Place
and Route (PAR) tools in order to minimize the power
consumption of a circuit’s routing interconnect.

 The power techniques are implemented in the Low-
Power Intelligent Tool Environment (LITE). Figure 1 shows
the tool flow. The LITE tool infrastructure provides the
capability of querying circuit components, running
simulations, and tracking signal transitions. LITE consists of
four components: power analysis, power modeling, power
optimization, and power visualization. The power calibration
component interacts with Xilinx CAD tools to extract
parameters which are fed into the power modeling
component to create post-synthesis level power estimation.
The power visualization component displays circuit’s power
consumption during simulation, highlights power intensive
modules, and plots various power consumption metrics of the
design. The power optimization component applies the
power optimization techniques discussed in the next section.
The power optimization techniques in LITE do not modify
design logic, but rather feed additional constraints to Xilinx
tool to guide the Place and Route process producing low
power circuit implementations. A more detailed description
of the LITE tools can be found in [9].

Figure 5. LITE Tool Flow

B. Power Optimization Techniques

In this section we will present and discuss the four power
optimization techniques that have been developed in the past
year: Slack Minimization, Clock Tree Paring, N-Terminal
Net Co-location, and Area Minimization.

i. Slack Minimization

The slack minimization algorithm assumes that the PAR
tools will leave each net at or just under the user’s specified
timing requirements, in many cases leaving slack, or extra
net length that could be further tightened to reduce
capacitance. For this algorithm slack is defined as

wrLogicSpec TTTSlack min−−= (2)

where SpecT is the user’s timing specification, LogicT is

the timing delay of any combinatorial logic in between flip-
flops on the net, and wrTmin is the minimal wire timing
delay. For example, in the left hand side of Fig. 6, a flip-flop
to flip-flop path has two intermediate components, with 1 ns
and 2 ns individual delay. The user’s specified clock is
running at 100 MHz, i.e. 10 ns in period. Therefore, the slack
of the path is 7 ns. Without additional constraints, the PAR
tools will typically meet the maximum delay necessary to
still meet the constraints as it should, creating a wire delay of
up to 7 ns. If we allow 1 ns delay between each logic
element, we can reduce the interconnect length to 3 ns and
reduce the interconnect capacitance.

 The slack minimization technique uses the LITE analysis
component to prioritize high capacitance, high toggle rate
nets, calculate the slack, and tighten the timing constraints on
these nets allowing for only minimal wire length. In practice,
nets with ample slack are typically those with two or less
levels of combinational logic between flip-flops.

Figure 6. Slack Minimization

ii. Clock Tree Paring

The clock tree paring algorithm targets the largest
contributor to dynamic power consumption in most circuits
by utilizing placement constraints to minimize the size of the
clock net tree utilized. As introduced in Section II, in the
Xilinx Virtex-II FPGAs, clock nets are distributed on
dedicated routing resources. Through FPGA editor and
experimentation, we observe that clock network is like a tree,
with the main trunk traveling north to south in the middle of
the chip, and branches extending west and east into clock
regions. The number of clock regions varies depending on
the size of the device. The clock tree is gated such that
completely unused branches of the tree are effectively turned
off. Therefore by placing logic closest to the clock trunk,
clocking power can be reduced by gating more of the clock
tree.

In Xilinx Virtex-II FPGAs, clocks are distributed on
dedicated global clock lines. Through FPGA editor and
experimentation, we observe that clock network is like a tree,
with the main trunk traveling north to south in the middle of
the chip, and branches extending west and east into clock

regions. In clock regions, each clock branch has many sub-
branches that connect directly to flip-flops. Figure 7 depicts
the clock tree and clock regions in the XC2V6000 FPGA
device. The clock tree is gated such that the entire unused
branches or sub-branches, can be completely turned off.
Therefore by grouping clock-driven logic closer to each
other, clocking power can be reduced by leaving more clock
branches/sub-branches idling.

Figure 7. Clock Tree and Clock Regions in XC2V6000 FPGA

The clock tree paring algorithm analyzes a user’s circuit,
computes a minimum logic resources needed to contain all
the logic associated with a clock net, and generates area
constraints to specify where the associated clock logic may
be placed. The size of the area is determined by a clock’s
fanout. For multiple clock cases, the LITE tool can prioritize
high power consumption clock to be placed. The LITE tool
records the locations of placed clocks and prevents over-
usage of a region of resources by avoiding area overlaps of
multiple clocks. It should be noted that the clock groups do
not have to be placed close to the main trunk to save power.
In the cases that IO timing is critical, the clock groups can be
placed close to IOs to achieve the power benefits.

iii. N-terminal Net Co-location

N-terminal net co-location power optimization is targeted
to reduce the power consumed by signal nets. “Terminal” is
defined as the sum of the fanin and fanout of a net. For a
simplified case, a 2-terminal net is a net with a single fanout.
N-terminal net co-location restricts net terminals to be placed
in adjacent slices. As depicted in Figure 8, net terminals are
grouped in pairs, and for each pair, a constraint is used to
restrict the two terminals to be located close to each other,
and thus reducing the signal net length and power. The
algorithm takes advantage of lower capacitance east-west
routing sources, and avoids putting constraints on the nets
that would naturally be mapped to dedicated low-capacitance
lines such as carry chains, shift registers, and nets that are
mapped internally to slices. The nets are sorted and
prioritized by power consumption using the LITE power
analysis environment to target high-capacitance and high
toggle rate nets.

1ns
2ns 1ns 2ns

2ns 2ns 3ns 1ns 1ns 1ns

Figure 8. N-Terminal Placement

iv. Area Minimization

The area minimization power optimization technique is
based on the observation that routing interconnect lengths
highly depend on the placement of components. This
technique is expected to work well on circuits that under-
utilize the logic available on the chip due to I/O bound
designs or poor device size selection. These designs are
usually placed loosely over the whole chip by the COTS
PAR tools. Consequently, the circuits contain a lot of longer
connection wires and hence increase the total net power. By
using area minimization constraints, a design is compacted
more tightly in a given area of a chip. Net lengths are
shortened and thus power is saved. The size of the area is
estimated by analyzing and computing the slice count each
design element needs by the LITE tools. The sides of the area
are proportional to the chip dimensions to balance the north-
south bias of the clock trunk.

C. Experimental Results and Discussion

A test suite of ten circuit benchmarks of unmitigated
ground based designs was utilized to verify the power
optimization algorithms, listed in Table I. This suite
represents a fairly wide taxonomy of applications, from glue
logic (Mem) to cores (CRC, FM, VGA, USBF, PCI, and
DES3) to end to end applications (Conv, S1, and S2),
spanning a wide range of device sizes. Each design is
mapped into the smallest device that can accommodate the
circuit. The baseline power, shown in column 3, is the
internal dynamic power of each circuit as reported by
XPower, i.e., the dynamic power consumed by logic
elements, clock, and signal nets. Figure 9 shows the Slice /
IOB utilizations of these designs. Slice occupation ranges
from 14% to 86%, and IOB occupation 11% to 90%. All
designs also had UCF files specifying I/O pin locations and
minimum clocking requirements.

TABLE I
BENCHMARK CIRCUITS AND RESULTS

Design Device
(XC2V)

Base-
line

Power
(mW)

Clock
Par-
ing

Slack
Min

2Term
 Net

Area
Min

Comb-
ined

CRC 80 31 5.9% 0.3% -2.9% 1.2% 6.7%
FM 250 102 2.9% 0.0% -0.4% 0.4% 2.9%

VGA 250 138 12.5% -
0.7%

0.7% 0.4% 12.7%

USBF 500 82 10.7% -
0.7%

-4.5% 0.2% 10.7%

PCI 1000 39 18.7% 0.0% -3.8% 0.6% 19.4%
Conv 1000 163 4.9% 0.1% -0.4% 1.2% 7.1%
DES3 2000 139 8.6% - -0.7% 6.9% 8.6%

1.7%
Mem 6000 643 0.7% 2.1% 0.4% 1.6% 3.3%

S1 6000 251 10.7% -
0.9%

-0.6% 2.8% 10.7%

S2 6000 1020 19.4% 4.1% 1.0% 0.0% 19.4%

Figure 9. Benchmark Slice/IOB Utilization

The process of power verification is illustrated in Figure 1.
The benchmark designs are imported to the LITE tool
through the EDIF parser. The LITE tools analyze the circuits
and generate new constraint files using the power
optimization techniques. The Xilinx tools, with the guidance
of the new constraint files, place and route the design to
create power optimized implementations. To measure the
power results, we use the Xilinx XPower tool with placed
and routed netlists and the Value Change Dump (VCD) data
created in the back-annotated simulation.

The remaining columns in Table I show the results
achieved for each of the optimization techniques mentioned
herein. Clock paring proved to be the dominate technique.
These four power techniques can be combined to further
reduce power consumption. In all the circuits, clock power is
the most dominant. So for the combined power optimization
testing, we combine the clock tree paring technique with the
next best technique for each circuit allowing the additional
constraints to fine tune the power consumption. Table II
shows the overall positive results for each individual power
optimization technique as well as the maximum power
reduction achieved when combining the techniques. As
shown in the table, 5 out of 10 benchmark designs reach their
maximum power reduction by using a combination of
techniques. The power reduction ranges from 2.9% to 19.4,
and the average improvement is 10.2%. For a more detailed
discussion of the algorithms and their results, the reader is
referred to [10].

V. Cross Functional Test Results

A. Radiation Mitigation
Validation of the partial TMR mitigation approach and

the BLTmr tool, which automates this style of mitigation for
Xilinx Virtex and Virtex-II FPGA designs, was a two-stage
process. First, unmitigated and mitigated designs were tested
using the Virtex-II SEU Emulator (V2SE) [11] to identify
configuration bitstream bits that caused errors on the designs’
outputs as well as to classify these bits as causing persistent
or non-persistent errors. The second stage was to take the
designs to a cyclotron and expose them to proton radiation to
verify the results of the V2SE.

To perform this validation, the V2SE was updated to test
each configuration bit that caused an output error when upset
for the persistence of the produced output error. This was
done using the following general algorithm found in Figure
10.

 Note that the accelerator tests were performed using 50
MeV proton radiation at the Lawrence Berkeley National
Laboratory’s Berkeley Accelerator Space Effects Facility.
The hardware and software used for the tests are directly
derived from those used in the V2SE. The capability to
correctly “skip” BlockRAM data portions of the bitstream
during configuration scrubbing and readback were added to
the V2SE application programming interfaces (APIs) to
perform this testing. In these tests, one FPGA hosted the
design under test (DUT) and the other hosted the Golden
design. The DUT FPGA was exposed to proton radiation
while the Golden FPGA produced the input vectors and
compared output vectors in real time to identify output errors
generated by SEUs. All designs executed at a frequency of 6
MHz (identical to the speed in the V2SE).

 For these validation experiments for Virtex-II designs, we
used two different designs. The first, called synthetic was a
design developed by BYU to specifically test the BLTmr
tool’s effectiveness at mitigating error persistence due to

SEUs. The second design, which we will call iconv, is a 3x3
image convolution kernel benchmark circuit representative of
NASA ESTO applications.

For synthetic, two versions of the design were tested, an
unmitigated version (called synthetic) and a partial TMR

version (called synthetic_partial) which allowed the BLTmr
tool to utilize as many resources as possible in the device to
mitigate configuration bits causing persistent and non-
persistent output errors. The synthetic design was
intentionally created to be too big to fully TMR, consuming
41% of the slices, 10% of the look-up tables (LUTs), and
35% of the flip-flops of a XC2V1000. After partial TMR,
the design’s slices utilization increased by a factor of 2.42, its
LUT utilization increased by 3.25x and it flip-flop utilization
increased by 2.68x.

The results of both SEU emulation and accelerator testing
can be found in Table II BLTmr Results: Synthetic Design.
In the table and in the following discussion, “sensitive” bits
are those configuration bits causing output errors if they are
flipped while “persistent” bits are those “sensitive” bits that
cause persistent output errors. The results demonstrate the
BLTmr does effectively target the “persistent” configuration
bits when performing partial TMR. The targeted TMR
reduced the persistent bits by 63% while only reducing the
sensitive bits by 40%.

For the image convolution design, iconv, a larger variety
of TMR options were explored. Additionally, some of the
designs were power optimized using the clock-tree pruning
technique. The list of design tested includes the following:

• iconv, iconv_lp: These represent the iconv design
without SEU mitigation. (Note: Design with the “_lp”
designation are the power optimized versions);

• iconv_partial, iconv_partial_lp: These used partial
TMR on the feedback portions of the circuit only (not
the input or output logic);

• iconv_full, iconv_full_lp: These designed were
produced using BLTmr’s full TMR option.

Note that for the full TMR case, none of the inputs or the
outputs were triplicated at the chip-level, so some single
points of failure still exist in the circuits. This was
intentional since many designs cannot afford to use 3x the
FPGA pins.

Table III summarizes the results for the image
convolution design for both SEU emulation and the proton
accelerator tests. Note that the results from the proton
accelerator test have been scaled to account for the fact that
BRAM data upsets were not measured during the
experiment. The BRAM had to be skipped (as mentioned
above) to avoid unintentionally corrupting the data stored in
the designs’ BRAM.

From the SEU emulator results, it is clear that these
designs were significantly less sensitive to SEUs in the
configuration bitstream to begin with. Further, by comparing
the unmitigated iconv designs with the iconv_partial designs,
it is quite clear that the BLTmr tool is successfully

 SEU Emulator Accelerator
Design Total

Configuration
Bits

(XC2V1000)

Sensitivity
(%)

Persistence
(%)

Sensitivity
% (Total
events)

Persistence
% (Total
events)

Total
Upsets

% of
bitstream

upset

Synthetic 3744736 3.42% 1.65% 5.20% (492) 2.46% (233) 9468 0.25%
synthetic_partial 3744736 2.04% 0.61% 3.05% (375) 1.03% (127) 12314 0.33%

Table II BLTmr Results: Synthetic Design

Given the set of configuration bits causing output
errors, SOE

I. For each i ε SOE, do
a. Upset configuration bit
b. Reset design and run
c. Test for output error

i. If an output error occurred, repair
configuration bit, wait, and test
for an additional output error
1. If it occurred, record as

causing a persistent error
2. Otherwise, no persistent

error occurred
ii. Otherwise, no error occurred and

repair upset bit

Figure 10 Error Persistence Algorithm for
V2SE

prioritizing what is mitigated based on persistence—in both
the normal power and power optimized designs a slight
reduction of sensitivity is observed, but the persistence is
reduced 41-57%. In comparing the SEU emulator results for
the unmitigated and full TMR designs, BLTmr is again
clearly operating quite well. Reductions of 90-93% can be
observed for both sensitivity and persistence.

In comparing the normal power designs with the power
optimized designs, a clear 6.4-10.7% increase in sensitivity
can be observed for these designs. Since the power
optimized designs started with identical EDIF netlists to the
normal power designs, these designs use effectively the same
number of resources as the unoptimized original designs.
From this it is clear that the main difference between the
designs is in the routing between the resources. In the power
optimized designs, the amount of clock routing is reduced
through placement constraints on the designs. These
reductions in clock routing, though, have apparently lead to a
significant increase in the average number of configuration
bits used per connection between logic resources. Though
additional work will be necessary to determine the exact
cause, the placement of the design resources into a tighter
area may likely lead to less optimal routes in terms of length
and types of routing.

The illustrations in Figure 11 provide a good example of
this for the iconv_full variations of the design. The
iconv_full design is distributed through the entire chip,
potentially allowing the Xilinx placement and routing tools
to reduce average distances between resources. The
iconv_full_lp design intentionally packs the resources to the
left side of the chip to reduce the active portions of FPGA’s
clock tree. In the process, though, the reader may note a
significant number of longer routes in the upper left hand
corner of the power-optimized design. These are the routes
between logic resources and the embedded hardware
multipliers of the FPGA. Though a majority of the design
can be packed nicely together, the physical layout of the chip
itself causes this packing to increase the length of some
routes. This is only an example of how the SEU sensitivity
of FPGA designs can be noticeably affected by placement
and routing.

With regards to the accelerator results, there is a fairly
good correlation between the SEU emulator results and the
accelerator results, especially considering the relative small

number of events observed and the fact that the SEU
emulator does not upset flip-flop state or effectively BRAM
state for this design. Though the numbers of events in the
data do not provide strong statistically significant results,
they do suggest that the results of SEU emulation are on the
right approximate order of magnitude. More events were not
collected due to sampling frequency limitations—during the
tests, an experimenter desires to have about one upset per
configuration data readback so that output errors can be more
strongly correlated with specific observed SEUs. With the
current test fixture, this amounts to about 2-3 upsets per
second.

One significant anomaly in the accelerator data does
exist, if the iconv_full_lp results are compared with the SEU
emulator results. Considering the performance of the other
designs, there are many possible explanations, but the most
likely explanation, at this point, would tend to be timing
problems with test setup. As noted earlier, this is the design
that is most likely to have timing problems in keeping the
DUT and Golden designs synchronized. Even a slight timing
problem would skew results considering the number of
events involved. Additional work will be necessary to
understand this issue.
 In summary, the BLTmr validation study has shown that
the BLTmr tool is effective in reducing the SEU sensitivity
of designs as well as designs’ susceptibility to error
persistence due to SEUs. Further, the SEU emulator was
demonstrated to be very useful tool in understanding the
sensitivity and error persistence of designs.

B. Power Optimization Results on SEU-mitigated Circuits

 SEU Emulator Accelerator (BRAM adjusted)
Design Total

Bitstream
Bits (2V1000)

Sensitivity
(%)

Persistence
(%)

Sensitivity
% (Total
Events)

Persistence
% (Total
Events)

Total
Upsets

(estimated
)

% of bitstream
upset

iconv 3744736 0.70% 0.32% 0.66% (81) 0.14% (17) 12214 0.33%
iconv_lp 3744736 0.78% 0.46% N/A N/A N/A N/A

iconv_partial 3744736 0.62% 0.19% N/A N/A N/A N/A
iconv_partial_lp 3744736 0.66% 0.20% 0.61% (50) 0.02% (2) 6291 0.22%

iconv_full 3744736 0.05% 0.03% 0.17% (24) 0.08% (12) 14470 0.39%
iconv_full_lp 3744736 0.05% 0.03% 0.86% (181) 0.12% (25) 21075 0.56%

Table III BLTmr Results: Image Convolution

iconv_full (full TMR, no power opt) iconv_full_lp (full TMR, power opt)
Figure 11 Layout of normal and optimized designs

 In this experiment, the benchmark and its radiation-
mitigated designs are applied with the LITE tool, and the
power improvement results are analyzed. The benchmark is a
highly pipelined image convolution engine that enables to
process three input data in parallel and create one output each
clock cycle. The design is implemented in a Xilinx Virtex2
1000 FPGA, and it utilizes nine multipliers and three block
RAMs. Triple Modular Redundancy (TMR) is applied to the
image convolution design using the BLTmr tool. For the
power analysis, we will consider two partially triplicated
versions of the benchmark design using the BLTmr tool. In
the first design, only the structures that cause “persistent”
errors are triplicated. In this case, about 35% of the original
instances are triplicated. The second design is a full TMR
version.

The four power minimization techniques and their
combinations are applied to the image convolution kernel
benchmark. Eight sets of random tap values are utilized to
each circuit. Figure 12 shows the results of the maximum
power saved using the techniques. The solid lines are the
power consumption of the three designs before power
optimization: the original convolution engine design, the
partial TMR design, and the full TMR design. The dotted
lines show the power consumption of the corresponding
power-optimized circuits. Power is improved by 8.4% on the
original design. The partial and full TMR designs have
power reduction of 9.0% and 14.2% respectively.

Figure 12. Power Optimization Results of Convolution Kernel

The TMR designs respond well to the presented power

algorithms. The 2-terminal net co-location method shows
increasingly better results with more TMR, achieving the
best power minimization in the full TMR design. This result
illustrates that more crowded circuits present more
opportunities to optimize signal power. The slack
minimization technique reduces the power on all the three
designs, however it saves the most power on the unmitigated
design. In small circuits that have low Slice occupation like
non-TMR’ed design, nets usually have more slack and thus
have more opportunity to optimize. The area minimization
approach produces positive power reduction on all the
designs. However, the clock paring technique works best of
all the algorithms.

VI. Conclusions

 In the final year of this effort, all the tools were finalized
and verified. The image convolution benchmark circuit was
mitigated with varying levels of overhead and robustness
utilizing the BLTmr tool. Each of these designs was then
optimized for power using the algorithms developed. Power
optimization was verified using the XPower testbed and
radiation robustness was verified using both the V2SE and
proton radiation experiments. By selectively controlling the
amount of triplication, 25-50% reductions in power and size
could be obtained with little impact on persistent error
mitigation. Using power optimization techniques another 5-
15% dynamic power reduction could be achieved. It was
found that the power optimization techniques did result in a
minor increase in errors, most likely due to dense packing of
the bitstream.

REFERENCES
1 French, et al., “Design Tools for Reconfigurable Hardware in Orbit,” Earth
Science Technology Conference 2004, Palo Alto, California, June 2004.
2 “Adaptive Computing Systems”; 1997- 2003 DARPA effort; see
www.jhdl.org
3 Carl Carmichael, Earl Fuller, Phil Blain, and Michael Caffrey, “SEU
Mitigation Techniques for Virtex FPGAs in Space Applications”,
Proceeding of the Military and Aerospace Programmable Logic Devices
International Conference (MAPLD), Sept. 1999, Laurel, MD, pp. C2.1-8.
4 Michael Caffrey, Paul Graham, Michael Wirthlin, Eric Johnson, and
Nathan Rollins, “Single-Event Upsets in SRAM FPGAs”, Proceedings of the
5th Annual International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD), Sept. 2002, pp. P8.1-6.
5 B. Pratt, E. Johnson, M. Wirthlin, M. Caffrey, K. Morgan, and P. Graham,
“Improving FPGA Design Robustness with Partial TMR,” MAPLD ’05,
Washington, D.C., September 2005.
6 J. H. Anderson, and F. N. Najm “A novel low-power FPGA routing
switch,” IEEE Custom Integrated Circuits Conference (CICC), Orlando, FL,
pp. 719-722, October 3-6, 2004
7 F. Li, Y. Lin, L. He, and J. Cong “Low-power FPGA using Pre-defined
Dual-Vdd/Dual-Vt Fabrics,” Proceedings of the 2004 ACM International
Symposium on Field-Programmable Gate Arrays, Feb. 2004.
8 J. H. Anderson, and F. N. Najm “Power-aware Technology Map-ping for
LUT-based FPGAs,” IEEE International Conference on Field-
Programmable Technology, Dec. 2002.
9 Matthew French, Li Wang, and Michael Wirthlin “Power Visualization,
Analysis, and Optimization Tools for FPGAs,” IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2006, Napa, CA.
10 Li Wang, Matthew French, Azadeh Davoodi, and Deepak Agarwal
“FPGA Dynamic Power Minimization through Placement and Routing
Constraints,” EURASIP Journal on Embedded Systems, Special Issue on
Filed Programmable Gate Arrays, 4th Quarter, 2006.
11 M. French, P. Graham , M. Wirthlin, L. Wang, G. Larchev, “Radiation
Mitigation and Power Optimization Design Tools for Reconfigurable
Hardware in Orbit”, Earth Science Technology Conference, June 2005,
Washington, D.C.

