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Abstract- The Reconfigurable Hardware in Orbit (RHinO) 
project is focused on creating a set of design tools that facilitate 
and automate design techniques for reconfigurable computing 
in space, using SRAM-based field-programmable-gate-array 
(FPGA) technology. In the final year of the project, design tools 
that have been created to visualize and analyze an FPGA circuit 
for radiation weaknesses and power inefficiencies were 
validated and verified in radiation testing and power 
measurement testbeds. For radiation, a single event Upset 
(SEU) emulator, persistence analysis and mitigation tool, and a 
half-latch removal tool for Xilinx Virtex-II devices have been 
created.  For power, dynamic power visualization, analysis, and 
optimization tools have been completed. In this paper, the final 
combined test results are presented for an image convolution 
test circuit with different levels of radiation mitigation and 
power optimization. 
 

I. INTRODUCTION 

SRAM-based FPGAs have become a promising solution 
to processing on space-based payloads. They offer features 
that anti-fuse FPGAs do not, such as reprogrammability, 
embedded multipliers, and embedded processors, while also 
offering 5-10x more logic gates. These features allow 
SRAM-based FPGAs to address resource multiplexing, fault 
tolerance, mission obsolescence and design flaws in on-orbit 
payloads that directly impact design cost and mission risk, 
while also providing better processing performance. 
However, a significant barrier to developing space-ready 
SRAM-based FPGA applications is the difficulty in 
designing for the rigorous constraints mandated by the 
operational environment. Two main issues limit the use of 
conventional FPGAs to such designs: 1) SRAM-based 
FPGAs are sensitive to radiation effects, namely, total 
ionizing dose (TID), single event latchup (SEL), and single-
event-upsets (SEUs), because of their high proportion of 
memory structures; and 2) SRAM-based FPGAs designs 
tools optimize for throughput at the expense of power.  

 Current foundry process technology for Xilinx FPGA 
devices provides enough tolerance for a large number of ESE 
orbits for total dose and latch up (no destructive latchups 
have been reported), however the SEU presence is a major 
design/operational issue. The large amount of static memory 
within SRAM-based FPGAs, such as look-up tables, routing 
switch tables, etc., makes them sensitive to SEUs. While 
traditional hardware redundancy techniques improve the 
reliability of FPGA designs (at the expense of increases in 
hardware, power, etc.), novel FPGA-specific techniques are 
required to address the unique vulnerabilities of SRAM-
based FPGA architectures, while incurring less hardware 
overhead. Therefore, design automation tools evaluating and 
assessing the reliability of FPGA designs, inserting 

appropriate redundant hardware, and manipulating the low-
level structures of the FPGA design are needed for robust 
operation and SEU and latch-up tolerance. 

Available FPGA synthesis tools optimize for speed or 
area, but not for real-time power consumption. Limited 
power estimation tools are available, such as Xilinx’s 
XPower; however, these are difficult to use and have limited 
utility to the actual FPGA design process. Accurate power 
estimates are only achievable after completing an entire 
iteration of the design cycle and provide no power 
optimization guidance. To make effective use of FPGAs in 
space, tools providing accurate power estimation and 
dynamic power optimization, operating on the FPGA’s gate 
logic or on individual configurable logic blocks (CLBs), are 
needed; specifically: 1) to monitor power consumption early 
in the design process at a useful granularity (e.g., at CLB); 
2) to aid in the design analysis that captures data-dependent 
transients as well as overall power consumption; and 3) to 
perform automated dynamic power optimization. 

Both the radiation-induced and power consumption 
effects are currently handled through manual intervention or, 
at best, through ad-hoc in-house tools. There is a real need in 
the community for validated design tool automation to raise 
the technology readiness level (TRL) of SRAM-based FGPA 
user designs. The RHinO project is leveraging an 
established, open-source tool-suite that accepts output from 
commercially available synthesis tools to create tools that 
allow the developer of a space-based FPGA application to 
automatically analyze and optimize a Xilinx Virtex II FPGA 
circuit for both space radiation effects and power utilization. 

 In the final year of this effort, the space radiation and 
power tools were validated and verified by running a test 
circuit through the complete tool flow and testing in the 
relevant radiation and power measurement testbeds. The 
remainder of this paper sequentially introduces the relevant 
tools in design flow chain. First the JHDL tool suite and 
extensions made to it for the RHinO toolkit are discussed 
section II. The SEU effects tools are discussed in Section III, 
and power tools are discussed in Section IV. Section V 
presents the testing results of the testbench circuit from both 
a radiation and power perspective.  Section VI will 
summarize the progress and draw conclusions.  

II. The JHDL Tool Suite 

A. Background 

As outlined in [1], the RHinO tools suite is built upon the 
open-sourced JHDL [2] FPGA design environment. The tool 
suite, shown in Figure 1, contains a digital circuit simulator, 



a circuit hierarchy browser, FPGA library primitives, and 
tools for exporting user designs into EDIF and VHDL. JHDL 
provides an open API into the circuit structure to facilitate 
the creation of application-specific design aids for viewing, 
revising, manipulating, or interacting with a user design. The 
integrated design aids, circuit API, and flexibility of JHDL 
make it an ideal tool for aiding the development of radiation-
hardened and power-aware space-based FPGA designs. A 
variety of application-specific tools can be created to analyze 
and improve the reliability of FPGA circuits. 

 
Figure 1. JHDL Tool Suite 

Under this effort, RHinO is devising new features for 
JHDL, specific to space environments, which would enable 
SRAM-based FPGA payload developers to confidently 
manage the limiting on-board spacecraft design constraints 
for power, radiation effects, fault-tolerance, reliability, etc. A 
key goal of the effort is interoperation with existing 
commercial tool flows based on VHDL/Verilog, through 
seamless JHDL-EDIF translation.  Alternatively, the user can 
work entirely in the JHDL design environment, using the 
RHinO power and SEU tools in concert with the normal 
JHDL features for simulation, netlisting, and runtime control, 
all within a single user interface.    
B. RHinO Enhancements 
 During this project the JHDL infrastructure was enhanced 
 and continually refined to support the desired SEU 
mitigation and power tool functionality. A GUI event API 
was developed to support intercommunication and 
interoperability with other modules, or tools that could be 
dropped into JHDL. As shown in Figure 2, this has led to the 
development of multiple tool modules being able to leverage 
the core JHDL capabilities.  
 Considerable effort was spent enhancing the EDIF netlist 
tool, originally created to support importing 3rd party IP. The 
EDIF netlist parser and data structure software provides the 
central design database for both the RHinO power analysis 
tools and RHinO design reliability and mitigation tools. 
These tools provide two important capabilities for the RHinO 
tool suite. First, these tools provide the capability of 
importing an FPGA design created with a third-party tool 
into the RHinO infrastructure. Second, these tools provide a 
consistent circuit database for each of the tools created in the 
RHinO project. 

The relationship between the EDIF tools and other 
RHinO tools is shown below in Figure 2. An FPGA design is 
loaded into the RHinO suite through the EDIF parser and 

into the EDIF data structure. At this point, the design can be 
manipulated or analyzed using one of several RHinO tool 
components. For example, power estimates of the design can 
be made by using the JHDL/RHinO power estimator tool 
chain. In this mode, a dynamic simulation of the design is 
created in JHDL to obtain the activity rates of design 
components and nets. The power estimation and viewer tools 
are available for browsing and viewing the results of this 
design simulation.  Alternatively, the design reliability 
analysis tools may be invoked from the EDIF data structure. 
With these tools, the reliability of the design can be analyzed 
and presented to the user.  

A major goal of the final year of this project for BYU 
was to strengthen the community of users of the EDIF tool 
suite. Several tasks were completed to address this goal. 
First, the web-site for hosting the EDIF code has been 
expanded to include more documentation and distribution 
information. This web site, http://reliability.ee.byu.edu/edif/, 
is the repository for all of the EDIF community resources. 
Second, an online EDIF forum was created to provide a way 
to share information among the EDIF users. Third, the 
distribution process was simplified to provide a variety of 
distribution options at each distribution checkpoint. Fourth, 
several API examples were created and posted on this web 
site. With these new resources, we expect that the EDIF 
community will continue to grow and encourage more cross 
organizational collaboration. 

 

 
 

Figure 2. RHinO Tool Infrastructure 
 

III. SEU Radiation Effects 

A. Background 
 To further advance the TRL level of Virtex-II FPGAs for 
space applications, the RHinO project has a goal of 
improving the reliability of user designs in the presence of 
SEUs.  SEUs are the main radiation concern since these 
FPGAs have been shown to have acceptable tolerance to TID 
as well as to SEL for low earth orbits (LEO).  SEUs can 
occur in several memory structures on these SRAM-based 
FPGAs [3 4], namely in the support and control logic, the 
user design state, the programming memory (often called the 
configuration memory), and half-latches.  Upsets in the 
support and control logic can have a range of effects, from 
fairly benign to totally erasing the contents of the FPGA 



configuration memory.  Upsets in the user design state, such 
as in flip-flops and on-chip memories, may cause faults to 
occur in the user design's operation, while upsets in the 
configuration memory may change the user's design directly 
by changing the connectivity of logic or changing the logic 
functions themselves.  

This year, the SEU radiation research focused on four 
main areas: (1) developing a FPGA design analysis to 
provide early feedback on the reliability of a given design 
after HDL synthesis (2) validating a low-cost approach to 
provide design robustness through selective triple-modular 
redundancy (TMR) using the BLTmr tool [5] to reduce error 
persistence, (3) additional characterization of multi-bit upset 
(MBU) events due to single ion strikes in multiple device 
families, and (4) additional characterization of half-latch 
SEUs in Virtex-II. The remaining portion of this section will 
discuss each of these aspects in the order they appear in the 
RHinO tool chain depicted in Figure 1. 

B. STAR-C and Dynamic SEU Cross-section Analysis 
Until now, there have been relatively few ways to 

estimate the SEU sensitivity of user FPGA designs.  At least 
for methods are possible.  First is the engineering “rule of 
thumb” that states that a design will pessimistically have 1/10 
to 1/5 of the configuration bitstream’s static cross-section.  
This method is very imprecise, not very inciteful, and may 
lead to over or under engineering of space systems. 

The second approach, SEU emulation in hardware (like 
with V2SE), provides a much tighter bound on the actual 
cross-section.   But this approach requires the final placed-
and-routed design as well as the hardware setup to actually 
perform the tests.  Further, it may require a significant 
number of test runs to get very good statistics on the total 
sensitivity of designs since many errors can be data and 
operation dependent. 

The third approach involves using the Xilinx SEUPPI 
tool for determing the worst case number of configuration 
bitstream bits that can affect your design.  Past experience 
has demonstrated that this really is worst case, especially, 
when SEUPPI has no way of account for the redundancy in 
the design.  Again, you must also have the final placed and 
routed design available for the analysis.  

The fourth, and most common, approach is accelerator 
testing.  Of course, this can be quite costly when trying to 
determine the precise sentivities of a design since it may be 
hard to pinpoint the source of a problem since faults are 
injected randomly and sometimes in unobservable portions 
of the chip.  On the other hand, radiation testing is still a 
good sanity check. 

All of these solutions have their limitations and most are 
hard to correlate back to the original design.  During the last 
half of the project, we have been developing a tool that can 
perform SEU cross-section analysis of designs based on 
analysis of the designs’ EDIF.  The tool, Scalable Tool for 
the Analysis of Reliable Circuits (STAR-C), was originally 
developed for analyzing the reliability of nano-scale 
computing systems.  Though not originally  a part of the 
RHinO project, STAR-C is actually based on the same EDIF 

and JHDL tools that the power analysis work has used and 
helped to develop. 

For the RHinO project, STAR-C has been modified to 
estimate the number of configuration bits that cause single-
point failures in designs. Basically, the tool has a 
characterized library describing the potential sensitivities of 
individual FPGA resources.  STAR-C combines this 
knowledge with a knowledge of the effectiveness of TMR in 
the circuit to calculate the number of bits in the unmitigated 
portion of the design. Currently, the tool can analyze 
NMR/TMR as well as unmitigated circuits for the SEU 
cross-sections of their logic and memory resources.   

Future work on the tool includes efforts to better model 
the SEU sensitivities of the routing network and to provide 
designers with the ability to better analyze selective parts of 
highly redundant designs.  Further, we would like to add 
better visualization capabilities so that designers can find 

“reliability hot-spots” in their designs. 

C.  BLTMR for SEU Mitigation 
 In Figure 1, after reliability estimation is performed with 
the STAR-C tool, mitigation techniques can be implemented 
using the BLTmr tool. TMR can require greater than a three 
times increase in the amount of logic, I/O and memory used 
for a design, especially, when considering the costs of 
voting.  This significant resource cost also affects the speed 
of the design and the size of the chip and/or algorithms that 
can be used in the system. 

As an alternative to this costly approach, we have been 
researching a technique that prioritizes the design 
components that are mitigated so that the “most important” 
components are mitigated first and then, if space allows, 
other components may also be mitigated.  In our case, we 
have placed a priority on those circuit elements that, if 
disturbed via an SEU, will remain in an error state for an 
extended period of time despite scrubbing of the FPGA’s 
programming data (or configuration bitstream)—in other 
words, we are targeting user circuit structures that experience 
error persistence.  These circuits are primarily circuits with 
feedback, such as finite state machines and infinite-impulse 
response filters.  By emphasizing these feedback structures, 
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Figure 3. STAR-C Analysis Tool



we first reduce the portions of the circuit that would require a 
circuit reset to bring the circuit back to a “normal” operating 
state and then focus on portions of the circuit that cause more 
temporary  (or non-persistent) error conditions. 
 The BLTmr tool was developed as a proof-of-concept 
tool that allows a designer to choose the level of mitigation 
that is required or desired for a given design, using selective, 
partial TMR and up to full TMR to provide the requested 
result while balancing resource and reliability constraints. 
Originally developed by BYU and LANL for the Xilinx 
Virtex series of FPGAs, the BLTmr tool was ported to 
support Virtex-II for the RHinO project. This porting effort 
involved the creation of an architectural independent layer 
and architectural specific layers for both the Virtex and 
Virtex-II architectures. With this architectural independent 
layer, porting this tool to other architectures should be 
relatively straight forward. One of the most important 
improvements was the ability to estimate the device 
utilization of the FPGA during the partial TMR process. 
Device utilization estimates are essential for deciding how 
much TMR to apply for a given design. These estimates, 
however, are difficult to make at the EDIF level as the 
technology specific mapping has not taken place. A variety 
of tool options are provided to allow the user to experiment 
and control this estimation process. The BLTmr tool is now 
able to automatically apply partial TMR to any given design 
in a way that fully utilizes the FPGA resources.  

 The current version (0.1.2) of the tool allows the 
designer to select the mitigation approach in several flexible 
ways, including: (1) The designer can select a certain 
utilization level of a given FPGA device, using partial TMR 
as appropriate to maximize design reliability for that 
utilization level; (2) the designer can instruct the tool to 
mitigate (a) the feedback portions of the circuit, (b) the input 
cone of logic for these feedback regions, (c) the output logic 
of the feedback, (d) or various combinations of the three; and 
(3) the designer can select to fully TMR the design. 
 An evaluation [5] of this technique using the original 
Virtex family of FPGAs indicated for a significant digital 
signal processing (DSP) design that a 40% increase in slice 
utilization through partial TMR resulted in a 100x decrease 
in the number of configuration bits that can cause persistent 
output errors, leading to a 90x increase in the mean time 
before failure (MTBF) of the design in a Global Positioning 
System satellite (GPS) orbit1.  Further, several levels of costs 
and mitigation were possible.  To achieve a similar level of 
MTBF improvement for a design that had configuration bits 
that would only cause persistent errors required full TMR, 
requiring a 370% increase in slice utilization. The validation 
of this tool on the testbench circuits is discussed further in 
the Results section. 

D. Multi-bit Upsets in SRAM FPGAs 
Multi-bit upsets (MBUs) due to single event are becoming 
increasing common as the critical stored charged in memory 

                                                           
1 Using the following models: AP-8 Solar Minimum, JPL 
Solar Proton Quiet, and CREME96 Solar Minimum 

elements decreases with decreased CMOS transistor feature 
sizes and with the increased transistor densities due to these 
same decreased feature sizes.  With the increased probability 
of such events, the probability of defeating SEU mitigation 
schemes increases for many techniques, including simple 
error control coding and even TMR.  Our work with 
characterizing MBUs has been a step toward understanding 
the vulnerabilities of TMR due to MBUs. 

Previously, we reported on proton radiation results for 
Virtex-II and other devices.  For Virtex-II, 63-MeV proton 
radiation produces a multi-bit event about 1% of the time 
while, for the original Virtex devices, MBUs account for 
only 0.04% of SEU events. Additional work has been done 
to characterize Virtex-4 for MBUs for 63 MeV protons, 
demonstrating that Virtex-4 continues the trend for 
increasing sensitivity to MBUs, experiencing an MBU about 
3% of the time for SEU events on an XC4VLX25 and only 
2.2% of the time on the XC4VSX35. 

Additionally, considerably more data has been taken for 
Virtex-4 with regard to heavy-ions and MBUs.  Figure 4 
illustrates that, as expected, the trend toward more MBU 
susceptibility for small-featured CMOS devices continues, 
with MBUs approaching 50% of all events for Virtex-4 at an 
LET of about 57 MeV/mg/cm2.   

Additionally, we have started to quantify the effects of 
incidence angle of MBUs and have seen with Virtex-4 that 
changing the angle of incidence from 0 to 60 degrees can 
increase the percentage of MBUs by factors of 4.5-6 
depending on whether the ions are traversing adjacent CLB 
columns or traveling down a single CLB column, 
respectively.  Similar MBU angle data needs to be collected 
for Virtex-II to understand the effects. 

We have developed Virtex and Virtex-II SEU emulators 
that emulate the effects of the most common MBU events—
2-bit events.  Through improvements over the last year, the 
V2SE can now inject all adjacent 2-bit MBUs for designs, 
requiring only about four times the time required to do all 
single bit upsets.  We have also recently developed a few 
ways of emulating triplicated clocks and resets for the V2SE 
so we can more easily understand the effects of single-bit and 
multi-bit upsets on TMR designs.  Because of this progress, 

 
Figure 4. Percentage of MBU Events vs. Effective 

LET for Four FPGA Generations 



we are only just now ready to perform a significant amount 
of SEU emulation to determine the real effects of MBUs on 
actual user FPGA designs. 

In summary, MBUs are becoming increasingly more 
common in Xilinx SRAM FPGAs due to using ever 
decreasing CMOS feature sizes.  We have yet to see the 
MBU percentage curves saturate vs. LET and at LETs near 
60 MeV/mg/cm2, more than 35% of all events appear to be 
MBU events.  Additional work is needed to take this 
information and apply it to actual FPGA designs, including a 
significant number of fault-injection experiments using the 
V2SE. 

C. Half-Latch Mitigation 
To meet the goals for automated SEU mitigation of 

Virtex-II user designs, the V2SE was employed in validating 
the RadDRC-II tool, which was developed to eliminate half-
latch SEU sensitivities from user FPGA designs.  Unlike the 
results of using SEU emulation for Virtex, SEU emulation 
for Virtex-II does not seem to upset half-latches as 
frequently.  In fact, there was no noticeable difference 
between unmitigated Virtex-II designs and those mitigated 
by RadDRC-II. 

Both we and the Xilinx Radiation Test Consortium 
(XRTC) have done additional radiation testing to determine 
the effectiveness of half-latch SEU mitigation for Virtex-II.  
The testing by both organizations appears to confirm that the 
effect of half-latches on Virtex-II designs is significantly 
smaller than with the original Virtex FPGAs.   In fact, no 
noticeable difference was detected for mitigated and 
unmitigated designs that effectively filled the entire FPGAs 
with a shift register when testing them at Crocker Nuclear 
Laboratory with 63 MeV protons.  In the process, some 
“lock-up” like events for the designs did occur when the 
configuration bitstream was fine and the designs were reset, 
but with a cross-section of 4.16x10-13 cm2 per device, these 
are not likely to be the half-latch SEU events seen with 
Virtex.  The XRTC have seen similar results, noticing that 
half-latches appear to recover quickly from SEUs (frequently 
<< 1s). 

In summary, half-latch mitigation does not appear to 
provide a significant level of robustness to designs in the 
tests conducted so far.  However, there may be cases were 
replacing half-latches with constants directly controlled by 
the configuration bitstream may still be desirable—
especially, when a designer wants to reduce the number of 
“undetectable” circuit interruptions.  Still, the need for half-
latch mitigation appears to be somewhat debatable at this 
point. 

IV. Power 
A. Background 

While SRAM-based FPGAs are widely used in embedded 
systems and handheld devices because of their short design 
cycles, and growing performances, the power consumption 
remains a concern. The existing COTS power tools, such as 
Xilinx’s XPower, have limited functionality, and are difficult 
for users to extract information for power optimization. The 

goal of the power tools we introduce here is to yield 
immediate results on current devices and interoperate with 
COTS CAD tools. Many FPGA power reduction approaches 
have been introduced in previous works by other researchers 
[6, 7, 8], such as low-power VLSI design, LUT-based 
mapping, glitch reduction, and leakage power minimization. 
All these approaches address the power issue by either 
changing the FPGA architecture, or changing the original 
circuit design. The power optimization methodology 
developed under this program distinguishes itself from the 
others by not changing the functionality of the circuit, in 
order to preserve desired radiation fault mitigation circuit 
alterations, such as TMR or half-latch removal. These novel 
power optimization techniques convert power optimization 
goals into constraints compliant with throughput-based Place 
and Route (PAR) tools in order to minimize the power 
consumption of a circuit’s routing interconnect. 

   The power techniques are implemented in the Low-
Power Intelligent Tool Environment (LITE). Figure 1 shows 
the tool flow. The LITE tool infrastructure provides the 
capability of querying circuit components, running 
simulations, and tracking signal transitions. LITE consists of 
four components: power analysis, power modeling, power 
optimization, and power visualization. The power calibration 
component interacts with Xilinx CAD tools to extract 
parameters which are fed into the power modeling 
component to create post-synthesis level power estimation. 
The power visualization component displays circuit’s power 
consumption during simulation, highlights power intensive 
modules, and plots various power consumption metrics of the 
design. The power optimization component applies the 
power optimization techniques discussed in the next section. 
The power optimization techniques in LITE do not modify 
design logic, but rather feed additional constraints to Xilinx 
tool to guide the Place and Route process producing low 
power circuit implementations. A more detailed description 
of the LITE tools can be found in [9]. 

 
 

Figure 5. LITE Tool Flow 
 

B. Power Optimization Techniques 

In this section we will present and discuss the four power 
optimization techniques that have been developed in the past 
year: Slack Minimization, Clock Tree Paring, N-Terminal 
Net Co-location, and Area Minimization. 



i. Slack Minimization 

The slack minimization algorithm assumes that the PAR 
tools will leave each net at or just under the user’s specified 
timing requirements, in many cases leaving slack, or extra 
net length that could be further tightened to reduce 
capacitance. For this algorithm slack is defined as 

wrLogicSpec TTTSlack min−−=   (2) 

where SpecT  is the user’s timing specification, LogicT  is 

the timing delay of any combinatorial logic in between flip-
flops on the net, and wrTmin  is the minimal wire timing 
delay. For example, in the left hand side of Fig. 6, a flip-flop 
to flip-flop path has two intermediate components, with 1 ns 
and 2 ns individual delay. The user’s specified clock is 
running at 100 MHz, i.e. 10 ns in period. Therefore, the slack 
of the path is 7 ns. Without additional constraints, the PAR 
tools will typically meet the maximum delay necessary to 
still meet the constraints as it should, creating a wire delay of 
up to 7 ns. If we allow 1 ns delay between each logic 
element, we can reduce the interconnect length to 3 ns and 
reduce the interconnect capacitance. 

 The slack minimization technique uses the LITE analysis 
component to prioritize high capacitance, high toggle rate 
nets, calculate the slack, and tighten the timing constraints on 
these nets allowing for only minimal wire length. In practice, 
nets with ample slack are typically those with two or less 
levels of combinational logic between flip-flops. 

 
 

Figure 6. Slack Minimization 
 

ii. Clock Tree Paring 

The clock tree paring algorithm targets the largest 
contributor to dynamic power consumption in most circuits 
by utilizing placement constraints to minimize the size of the 
clock net tree utilized. As introduced in Section II, in the 
Xilinx Virtex-II FPGAs, clock nets are distributed on 
dedicated routing resources. Through FPGA editor and 
experimentation, we observe that clock network is like a tree, 
with the main trunk traveling north to south in the middle of 
the chip, and branches extending west and east into clock 
regions. The number of clock regions varies depending on 
the size of the device. The clock tree is gated such that 
completely unused branches of the tree are effectively turned 
off. Therefore by placing logic closest to the clock trunk, 
clocking power can be reduced by gating more of the clock 
tree.   

In Xilinx Virtex-II FPGAs, clocks are distributed on 
dedicated global clock lines. Through FPGA editor and 
experimentation, we observe that clock network is like a tree, 
with the main trunk traveling north to south in the middle of 
the chip, and branches extending west and east into clock 

regions. In clock regions, each clock branch has many sub-
branches that connect directly to flip-flops. Figure 7 depicts 
the clock tree and clock regions in the XC2V6000 FPGA 
device. The clock tree is gated such that the entire unused 
branches or sub-branches, can be completely turned off. 
Therefore by grouping clock-driven logic closer to each 
other, clocking power can be reduced by leaving more clock 
branches/sub-branches idling. 

 
 

Figure 7. Clock Tree and Clock Regions in XC2V6000 FPGA 
 

The clock tree paring algorithm analyzes a user’s circuit, 
computes a minimum logic resources needed to contain all 
the logic associated with a clock net, and generates area 
constraints to specify where the associated clock logic may 
be placed. The size of the area is determined by a clock’s 
fanout. For multiple clock cases, the LITE tool can prioritize 
high power consumption clock to be placed. The LITE tool 
records the locations of placed clocks and prevents over-
usage of a region of resources by avoiding area overlaps of 
multiple clocks. It should be noted that the clock groups do 
not have to be placed close to the main trunk to save power. 
In the cases that IO timing is critical, the clock groups can be 
placed close to IOs to achieve the power benefits.  

iii. N-terminal Net Co-location 

N-terminal net co-location power optimization is targeted 
to reduce the power consumed by signal nets. “Terminal” is 
defined as the sum of the fanin and fanout of a net. For a 
simplified case, a 2-terminal net is a net with a single fanout. 
N-terminal net co-location restricts net terminals to be placed 
in adjacent slices. As depicted in Figure 8, net terminals are 
grouped in pairs, and for each pair, a constraint is used to 
restrict the two terminals to be located close to each other, 
and thus reducing the signal net length and power. The 
algorithm takes advantage of lower capacitance east-west 
routing sources, and avoids putting constraints on the nets 
that would naturally be mapped to dedicated low-capacitance 
lines such as carry chains, shift registers, and nets that are 
mapped internally to slices. The nets are sorted and 
prioritized by power consumption using the LITE power 
analysis environment to target high-capacitance and high 
toggle rate nets.  
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Figure 8. N-Terminal Placement 

 
iv. Area Minimization 

The area minimization power optimization technique is 
based on the observation that routing interconnect lengths 
highly depend on the placement of components. This 
technique is expected to work well on circuits that under-
utilize the logic available on the chip due to I/O bound 
designs or poor device size selection. These designs are 
usually placed loosely over the whole chip by the COTS 
PAR tools. Consequently, the circuits contain a lot of longer 
connection wires and hence increase the total net power. By 
using area minimization constraints, a design is compacted 
more tightly in a given area of a chip. Net lengths are 
shortened and thus power is saved. The size of the area is 
estimated by analyzing and computing the slice count each 
design element needs by the LITE tools. The sides of the area 
are proportional to the chip dimensions to balance the north-
south bias of the clock trunk. 

C. Experimental Results and Discussion 

A test suite of ten circuit benchmarks of unmitigated 
ground based designs was utilized to verify the power 
optimization algorithms, listed in Table I. This suite 
represents a fairly wide taxonomy of applications, from glue 
logic (Mem) to cores (CRC, FM, VGA, USBF, PCI, and 
DES3) to end to end applications (Conv, S1, and S2), 
spanning a wide range of device sizes. Each design is 
mapped into the smallest device that can accommodate the 
circuit. The baseline power, shown in column 3, is the 
internal dynamic power of each circuit as reported by 
XPower, i.e., the dynamic power consumed by logic 
elements, clock, and signal nets. Figure 9 shows the Slice / 
IOB utilizations of these designs. Slice occupation ranges 
from 14% to 86%, and IOB occupation 11% to 90%.  All 
designs also had UCF files specifying I/O pin locations and 
minimum clocking requirements. 

TABLE I 
BENCHMARK CIRCUITS AND RESULTS 

Design Device 
(XC2V) 

Base-
line 

Power 
(mW) 

Clock 
Par-
ing 

Slack 
Min 

2Term 
 Net 

Area 
Min 

Comb-
ined 

CRC 80 31 5.9% 0.3% -2.9% 1.2% 6.7%  
FM 250 102 2.9% 0.0% -0.4% 0.4% 2.9% 

VGA 250 138 12.5% -
0.7% 

0.7% 0.4% 12.7% 

USBF 500 82 10.7% -
0.7% 

-4.5% 0.2% 10.7% 

PCI 1000 39 18.7% 0.0% -3.8% 0.6% 19.4% 
Conv 1000 163 4.9% 0.1% -0.4% 1.2% 7.1%  
DES3 2000 139 8.6% - -0.7% 6.9% 8.6% 

1.7% 
Mem 6000 643 0.7% 2.1% 0.4% 1.6% 3.3%  

S1 6000 251 10.7% -
0.9% 

-0.6% 2.8% 10.7% 

S2 6000 1020 19.4% 4.1% 1.0% 0.0% 19.4% 
 

 

 
Figure  9. Benchmark Slice/IOB Utilization 

 

The process of power verification is illustrated in Figure 1. 
The benchmark designs are imported to the LITE tool 
through the EDIF parser. The LITE tools analyze the circuits 
and generate new constraint files using the power 
optimization techniques. The Xilinx tools, with the guidance 
of the new constraint files, place and route the design to 
create power optimized implementations. To measure the 
power results, we use the Xilinx XPower tool with placed 
and routed netlists and the Value Change Dump (VCD) data 
created in the back-annotated simulation. 

The remaining columns in Table I show the results 
achieved for each of the optimization techniques mentioned 
herein. Clock paring proved to be the dominate technique. 
These four power techniques can be combined to further 
reduce power consumption. In all the circuits, clock power is 
the most dominant. So for the combined power optimization 
testing, we combine the clock tree paring technique with the 
next best technique for each circuit allowing the additional 
constraints to fine tune the power consumption. Table II 
shows the overall positive results for each individual power 
optimization technique as well as the maximum power 
reduction achieved when combining the techniques. As 
shown in the table, 5 out of 10 benchmark designs reach their 
maximum power reduction by using a combination of 
techniques. The power reduction ranges from 2.9% to 19.4, 
and the average improvement is 10.2%. For a more detailed 
discussion of the algorithms and their results, the reader is 
referred to [10]. 

V. Cross Functional Test Results 

A. Radiation Mitigation 
Validation of the partial TMR mitigation approach and 

the BLTmr tool, which automates this style of mitigation for 
Xilinx Virtex and Virtex-II FPGA designs, was a two-stage 
process.  First, unmitigated and mitigated designs were tested 
using the Virtex-II SEU Emulator (V2SE) [11] to identify 
configuration bitstream bits that caused errors on the designs’ 
outputs as well as to classify these bits as causing persistent 
or non-persistent errors.  The second stage was to take the 
designs to a cyclotron and expose them to proton radiation to 
verify the results of the V2SE. 



To perform this validation, the V2SE was updated to test 
each configuration bit that caused an output error when upset 
for the persistence of the produced output error.  This was 
done using the following general algorithm found in Figure 
10. 

 Note that the accelerator tests were performed using 50 
MeV proton radiation at the Lawrence Berkeley National 
Laboratory’s Berkeley Accelerator Space Effects Facility.  
The hardware and software used for the tests are directly 
derived from those used in the V2SE.  The capability to 
correctly “skip” BlockRAM data portions of the bitstream 
during configuration scrubbing and readback were added to 
the V2SE application programming interfaces (APIs) to 
perform this testing.  In these tests, one FPGA hosted the 
design under test (DUT) and the other hosted the Golden 
design.  The DUT FPGA was exposed to proton radiation 
while the Golden FPGA produced the input vectors and 
compared output vectors in real time to identify output errors 
generated by SEUs.  All designs executed at a frequency of 6 
MHz (identical to the speed in the V2SE). 

 For these validation experiments for Virtex-II designs, we 
used two different designs.  The first, called synthetic was a 
design developed by BYU to specifically test the BLTmr 
tool’s effectiveness at mitigating error persistence due to 

SEUs.  The second design, which we will call iconv, is a 3x3 
image convolution kernel benchmark circuit representative of 
NASA ESTO applications. 

For synthetic, two versions of the design were tested, an 
unmitigated version (called synthetic) and a partial TMR 

version (called synthetic_partial) which allowed the BLTmr 
tool to utilize as many resources as possible in the device to 
mitigate configuration bits causing persistent and non-
persistent output errors.  The synthetic design was 
intentionally created to be too big to fully TMR, consuming 
41% of the slices, 10% of the look-up tables (LUTs), and 
35% of the flip-flops of a XC2V1000.  After partial TMR, 
the design’s slices utilization increased by a factor of 2.42, its 
LUT utilization increased by 3.25x and it flip-flop utilization 
increased by 2.68x. 

The results of both SEU emulation and accelerator testing 
can be found in Table II BLTmr Results: Synthetic Design.  
In the table and in the following discussion, “sensitive” bits 
are those configuration bits causing output errors if they are 
flipped while “persistent” bits are those “sensitive” bits that 
cause persistent output errors.  The results demonstrate the 
BLTmr does effectively target the “persistent” configuration 
bits when performing partial TMR.  The targeted TMR 
reduced the persistent bits by 63% while only reducing the 
sensitive bits by 40%. 

For the image convolution design, iconv, a larger variety 
of TMR options were explored. Additionally, some of the 
designs were power optimized using the clock-tree pruning 
technique.  The list of design tested includes the following: 

• iconv, iconv_lp: These represent the iconv design 
without SEU mitigation.  (Note: Design with the “_lp” 
designation are the power optimized versions); 

• iconv_partial, iconv_partial_lp: These used partial 
TMR on the feedback portions of the circuit only (not 
the input or output logic); 

• iconv_full, iconv_full_lp:  These designed were 
produced using BLTmr’s full TMR option. 

Note that for the full TMR case, none of the inputs or the 
outputs were triplicated at the chip-level, so some single 
points of failure still exist in the circuits.  This was 
intentional since many designs cannot afford to use 3x the 
FPGA pins. 

Table III summarizes the results for the image 
convolution design for both SEU emulation and the proton 
accelerator tests.  Note that the results from the proton 
accelerator test have been scaled to account for the fact that 
BRAM data upsets were not measured during the 
experiment.  The BRAM had to be skipped (as mentioned 
above) to avoid unintentionally corrupting the data stored in 
the designs’ BRAM.   

From the SEU emulator results, it is clear that these 
designs were significantly less sensitive to SEUs in the 
configuration bitstream to begin with.  Further, by comparing 
the unmitigated iconv designs with the iconv_partial designs, 
it is quite clear that the BLTmr tool is successfully 

 SEU Emulator Accelerator 
Design Total 

Configuration 
Bits 

(XC2V1000) 

Sensitivity 
(%) 

Persistence
(%) 

Sensitivity 
% (Total 
events) 

Persistence 
% (Total 
events) 

Total 
Upsets 

% of 
bitstream 

upset 

Synthetic 3744736 3.42% 1.65% 5.20% (492) 2.46% (233) 9468 0.25% 
synthetic_partial 3744736 2.04% 0.61% 3.05% (375) 1.03% (127) 12314 0.33% 

Table II BLTmr Results: Synthetic Design 

Given the set of configuration bits causing output 
errors, SOE 

I. For each i ε SOE, do 
a. Upset configuration bit 
b. Reset design and run 
c. Test for output error 

i. If an output error occurred, repair 
configuration bit, wait, and test 
for an additional output error 
1. If it occurred, record as 

causing a persistent error 
2. Otherwise,  no persistent 

error occurred 
ii. Otherwise, no error occurred and 

repair upset bit 

Figure 10 Error Persistence Algorithm for 
V2SE 



prioritizing what is mitigated based on persistence—in both 
the normal power and power optimized designs a slight 
reduction of sensitivity is observed, but the persistence is 
reduced 41-57%.  In comparing the SEU emulator results for 
the unmitigated and full TMR designs, BLTmr is again 
clearly operating quite well.  Reductions of 90-93% can be 
observed for both sensitivity and persistence. 

In comparing the normal power designs with the power 
optimized designs, a clear 6.4-10.7% increase in sensitivity 
can be observed for these designs.  Since the power 
optimized designs started with identical EDIF netlists to the 
normal power designs, these designs use effectively the same 
number of resources as the unoptimized original designs.  
From this it is clear that the main difference between the 
designs is in the routing between the resources.  In the power 
optimized designs, the amount of clock routing is reduced 
through placement constraints on the designs.  These 
reductions in clock routing, though, have apparently lead to a 
significant increase in the average number of configuration 
bits used per connection between logic resources.  Though 
additional work will be necessary to determine the exact 
cause, the placement of the design resources into a tighter 
area may likely lead to less optimal routes in terms of length 
and types of routing. 

The illustrations in Figure 11 provide a good example of 
this for the iconv_full variations of the design.  The 
iconv_full design is distributed through the entire chip, 
potentially allowing the Xilinx placement and routing tools 
to reduce average distances between resources.  The 
iconv_full_lp design intentionally packs the resources to the 
left side of the chip to reduce the active portions of FPGA’s 
clock tree.  In the process, though, the reader may note a 
significant number of longer routes in the upper left hand 
corner of the power-optimized design.  These are the routes 
between logic resources and the embedded hardware 
multipliers of the FPGA.  Though a majority of the design 
can be packed nicely together, the physical layout of the chip 
itself causes this packing to increase the length of some 
routes.  This is only an example of how the SEU sensitivity 
of FPGA designs can be noticeably affected by placement 
and routing. 

With regards to the accelerator results, there is a fairly 
good correlation between the SEU emulator results and the 
accelerator results, especially considering the relative small 

number of events observed and the fact that the SEU 
emulator does not upset flip-flop state or effectively BRAM 
state for this design.  Though the numbers of events in the 
data do not provide strong statistically significant results, 
they do suggest that the results of SEU emulation are on the 
right approximate order of magnitude.  More events were not 
collected due to sampling frequency limitations—during the 
tests, an experimenter desires to have about one upset per 
configuration data readback so that output errors can be more 
strongly correlated with specific observed SEUs.  With the 
current test fixture, this amounts to about 2-3 upsets per 
second. 

One significant anomaly in the accelerator data does 
exist, if the iconv_full_lp results are compared with the SEU 
emulator results.  Considering the performance of the other 
designs, there are many possible explanations, but the most 
likely explanation, at this point, would tend to be timing 
problems with test setup.  As noted earlier, this is the design 
that is most likely to have timing problems in keeping the 
DUT and Golden designs synchronized.  Even a slight timing 
problem would skew results considering the number of 
events involved.  Additional work will be necessary to 
understand this issue. 
 In summary, the BLTmr validation study has shown that 
the BLTmr tool is effective in reducing the SEU sensitivity 
of designs as well as designs’ susceptibility to error 
persistence due to SEUs.  Further, the SEU emulator was 
demonstrated to be very useful tool in understanding the 
sensitivity and error persistence of designs. 

B. Power Optimization Results on SEU-mitigated Circuits 

 SEU Emulator Accelerator (BRAM adjusted) 
Design Total 

Bitstream 
Bits (2V1000) 

Sensitivity 
(%) 

Persistence 
(%) 

Sensitivity 
% (Total 
Events) 

Persistence 
% (Total 
Events) 

Total 
Upsets 

(estimated
) 

% of bitstream 
upset 

iconv 3744736 0.70% 0.32% 0.66% (81) 0.14% (17) 12214 0.33% 
iconv_lp 3744736 0.78% 0.46% N/A N/A N/A N/A 

iconv_partial 3744736 0.62% 0.19% N/A N/A N/A N/A 
iconv_partial_lp 3744736 0.66% 0.20% 0.61% (50) 0.02% (2) 6291 0.22% 

iconv_full 3744736 0.05% 0.03% 0.17% (24) 0.08% (12) 14470 0.39% 
iconv_full_lp 3744736 0.05% 0.03% 0.86% (181) 0.12% (25) 21075 0.56% 

Table III BLTmr Results: Image Convolution 

iconv_full (full TMR, no power opt) iconv_full_lp (full TMR, power opt)  
Figure 11 Layout of normal and optimized designs



 In this experiment, the benchmark and its radiation-
mitigated designs are applied with the LITE tool, and the 
power improvement results are analyzed. The benchmark is a 
highly pipelined image convolution engine that enables to 
process three input data in parallel and create one output each 
clock cycle. The design is implemented in a Xilinx Virtex2 
1000 FPGA, and it utilizes nine multipliers and three block 
RAMs. Triple Modular Redundancy (TMR) is applied to the 
image convolution design using the BLTmr tool. For the 
power analysis, we will consider two partially triplicated 
versions of the benchmark design using the BLTmr tool. In 
the first design, only the structures that cause “persistent” 
errors are triplicated. In this case, about 35% of the original 
instances are triplicated. The second design is a full TMR 
version.  

The four power minimization techniques and their 
combinations are applied to the image convolution kernel 
benchmark. Eight sets of random tap values are utilized to 
each circuit. Figure 12 shows the results of the maximum 
power saved using the techniques. The solid lines are the 
power consumption of the three designs before power 
optimization: the original convolution engine design, the 
partial TMR design, and the full TMR design. The dotted 
lines show the power consumption of the corresponding 
power-optimized circuits. Power is improved by 8.4% on the 
original design. The partial and full TMR designs have 
power reduction of 9.0% and 14.2% respectively.  
 

 
Figure 12. Power Optimization Results of Convolution Kernel 

 
The TMR designs respond well to the presented power 

algorithms. The 2-terminal net co-location method shows 
increasingly better results with more TMR, achieving the 
best power minimization in the full TMR design. This result 
illustrates that more crowded circuits present more 
opportunities to optimize signal power. The slack 
minimization technique reduces the power on all the three 
designs, however it saves the most power on the unmitigated 
design. In small circuits that have low Slice occupation like 
non-TMR’ed design, nets usually have more slack and thus 
have more opportunity to optimize. The area minimization 
approach produces positive power reduction on all the 
designs. However, the clock paring technique works best of 
all the algorithms.  
 

VI. Conclusions 

 In the final year of this effort, all the tools were finalized 
and verified. The image convolution benchmark circuit was 
mitigated with varying levels of overhead and robustness 
utilizing the BLTmr tool. Each of these designs was then 
optimized for power using the algorithms developed. Power 
optimization was verified using the XPower testbed and 
radiation robustness was verified using both the V2SE and 
proton radiation experiments. By selectively controlling the 
amount of triplication, 25-50% reductions in power and size 
could be obtained with little impact on persistent error 
mitigation. Using power optimization techniques another 5-
15% dynamic power reduction could be achieved. It was 
found that the power optimization techniques did result in a 
minor increase in errors, most likely due to dense packing of 
the bitstream.  
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