Development of a Pulsed 2-micron Laser Transmitter for CO$_2$ Sensing from Space

Upendra N Singh1, Jirong Yu1, Yingxin Bai2, Mulugeta Petros1 and Robert T. Menzies3

1NASA Langley Research Center, Hampton, VA
2Science Systems and Applications, Inc, One Enterprise Parkway, Hampton, VA
3Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Acknowledgement: Research and development under NASA Laser Risk Reduction Program funded by NASA Earth Science Technology Office (Program Director: George Komar)
Outline

• Background
• CO₂ DIAL/IPDA Research Activities
• 2-micron Pulsed Lidar Approach for CO₂ Measurement
• 2-micron Pulsed Coherent Detection Lidar - for Mobile Ground-based CO₂ Profiling
• 2-micron Pulsed Direct Detection IPDA Lidar for CO₂ Column Measurement from Airborne Platform
• Summary
Pulsed Lidar Approach

- The National Academies has identified CO₂ measurement from space as a critical mission for study of climate change and global warming

- NASA has planned Active Sensing Of CO₂ Emissions Over Nights, Days, And Seasons (ASCENDS) mission for CO₂ column measurements from space

- For column measurements, the pulsed lidar approach can eliminate contamination from aerosols and clouds to yield high accuracy measurements

- The pulse approach can determine CO₂ concentrations as a function of distance with high spatial and temporal resolution, a valuable data product that is not currently available
CO₂ Absorption Line at 2-micron

Wavelength (µm)

CO₂ absorption cross section (cm²)

% (P=1013.25 mbar, T=296 K, Volume Mixing Ratio=0.1)

R30 line

Line Center

On Line

Off Line

Volume Mixing Ratio=0.1)
Atmospheric Testing—2007 Results

- DIAL at better than 0.7% precision for column over ½ hour (9000 pulses).
- Range-resolved at better than 2.4% on 500-m bins and 6.7 minutes (2000 pulses)

Improvements for 2010 Tests

- Higher pulse energy (90mJ to 250mJ) for higher SNR.
- Higher pulse repetition rate (5Hz to 10 Hz) for more pulse averaging.
- Double pulsing format for more pulse averaging and better atmospheric sampling.
- More favorable line (R30) for less water vapor bias.

Mobile Ground based High Energy CO₂ DIAL Profiling Lidar – LRRP Funded

- Smaller
- More energy
- More robust

Table Top Transceiver (Transmitter + Receiver)
90 mJ/pulse, 5 pulses/sec.
3’x4’ Optical Table
(no telescope or scanner)

Previous implementation
90 mJ per pulse

Transceiver (Transmitter + Receiver)
250 mJ/pulse, 10 pulses/sec.
5.9” x 11.6” x 26.5”, 75 lbs.; 15 x 29 x 67 cm, 34 kg
(no telescope or scanner)

Small, Robust, 250 mJ per pulse
Double Pulsed 2-µm Laser Operation

Relative Ho population in 5I7

Time (s)

Amplitude (arb. Unit)

Time (µs)

ΔFWHM = 137 ns

Double Pulses (I_{osc} = 65 A)

Time between two pulses = 150 µs
Pulsed Coherent CO$_2$ DIAL

- Pulsed 2-micron laser transmitter
 - 250 mJ/10Hz
 - Coherent DIAL
- Provide CO$_2$ profiling/column density measurement

Transceiver
(2 micron Laser and Receiver electronics)

Seeding & Wave-length Locking Control

6” Telescope & Steering Mirrors

Cooling System

19” Electronic Rack:
1. Laser Control Electronics 5U (8.75”)
2. DAS Analog Processing 3U (5.25”)
3. PXI Controller 3U (5.25”)
4. User Interface Computer 3U (5.25”)

1” Electronic Rack:
- Wavelength Locking and switching
- Laser transmitter and receiver
- Data acquisition and processing electronics
- Control Electronics
- Thermal Management

Signals & Feedback

Return

Transmit

Telescope
On-Off Return Signal

![Graph showing power spectrum density vs. range for different types of signals. The graph includes lines for Off-line, 2G, 3G, and 4G signals, with power spectrum density values ranging from -38 to -16 dB. The x-axis represents range in meters, and the y-axis represents power spectrum density.](image-url)
Pulsed 2 μm Direct Detection IPDA Lidar System for CO₂ Column Measurement

- Pulsed 2 μm lidar, with ranging capabilities, provides a direct measurement of the atmospheric CO₂ path
- Provides high sensitivity in the boundary layer with no bias from aerosol layers and clouds on the measurement accuracy
- Higher per-pulse SNR (signal-to-noise ratio) obtainable with high energy 2 μm pulsed backscatter means less reliance on multi-pulse averaging, providing potential for higher along-track spatial resolution and better measurement capability in regions of partial cloud coverage, benefiting high precision measurements.
- Operating at 2 μm results in a weighting function that peaks near the surface
- Technical Challenges for IPDA Lidar Transmitter:
 - High efficiency
 - High average power
 - Good beam quality
 - Single frequency
 - Wavelength switching and controlling
Advanced-Space Carbon and Climate Observation of Planet Earth Mission Studies

- A-SCOPE: Scientific objective: The observation of the spatial and temporal gradients of atmospheric XCO₂ with a precision and accuracy sufficient to constrain CO₂ fluxes within 0.02 Pg C yr⁻¹ on a scale of 1000 x 1000 km².

- A-SCOPE: IPDA: Instrument Parameters

<table>
<thead>
<tr>
<th></th>
<th>Transmitter</th>
<th>Receiver</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.57 µm</td>
<td>2.05 µm</td>
<td></td>
</tr>
<tr>
<td>Pulse Energy</td>
<td>50 mJ</td>
<td>55 mJ</td>
<td></td>
</tr>
<tr>
<td>Pulse Repetition Frequency</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>Spectral line width</td>
<td>50 MHz</td>
<td>50 MHz</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telescope diameter</td>
<td>1 m</td>
<td>1.2 m</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>0.74</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Noise Equivalent Power</td>
<td>46 fW/Hz⁰.⁵</td>
<td>100 fW/Hz⁰.⁵</td>
<td></td>
</tr>
</tbody>
</table>
Ho Laser Energy Level Diagram

0.78/0.792µm Diode Pumping

- Heat loading (23% pump power)
- Up conversion
- Low repetition rate

Tm:fiber Laser Pumping

- Low heat loading (5% pump power)
- Less up-conversion
- High efficiency
- CW/high repetition operation

Levels

- **3H4**
- **3F4**
- **3H6**
- **5I7**
- **5I8**

Pumping Wavelengths

- 0.792µm
- 1.94µm
- 2.06µm
- 2.05µm

Diagrams

- Dipole-dipole interaction
- Light pump
- Laser pump

Notes

- 3H6 → Tm³⁺ → 5I8
- 3H4 → Ho³⁺ → 5I8
- 3F4 → Ho³⁺ → 5I7
Schematics of Lidar Transmitter

- Tm fiber laser
- Ho Oscillator
- Wavelength Control
- Ho Amplifier

Commercially available

Technology demonstrated and bread boarded; compacting and packaging is planned

Technology need to be developed/improved/demonstrated; system engineering and packaging is planned
Master Slave Laser System

The pump, oscillator, and seed beams are all mode-matched.
Ho:YLF Oscillator Performance (100 Hz)

The output pulse energy (mJ) vs. Tm:fiber laser pump power (W)
Oscillator Performance (High RR)

The output pulse energy (mJ) vs. Tm:fiber laser pump power (W) at different repetition rates:
- **1 KHz**: The graph shows a linear increase in output pulse energy with increasing pump power.
- **2 KHz**: Similar to 1 KHz, with a linear correlation.
- **7.5 KHz**: The correlation is maintained, showing consistent linear growth.
- **10 KHz**: Consistent trend, indicating a linear relationship between pump power and output pulse energy.

The data suggests a direct proportionality between the pump power and the output pulse energy across the different frequencies.
Master Oscillator-Amplifier Configuration
Breadboard Seed Lasers Schematic
Lidar Components

- Thulium-Fiber Pump Laser
- Ruggedly Packaged 80 W laser
- CO₂ DIAL/IPDA Wavelength Control
- Prototype wavelength and control layout
- CO₂ DIAL/IPDA Telescope
- CO₂ DIAL/IPDA Electronics
- CO₂ DIAL/IPDA Data Acquisition System
2-micron Laser Transmitter Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Development Objectives for Current System</th>
<th>Target Objectives for Space-based System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (µm)</td>
<td>2.051</td>
<td>2.051</td>
</tr>
<tr>
<td>Energy(mJ)/ Rep. Rate (Hz)</td>
<td>>65mJ / 50Hz</td>
<td>65mJ / 50Hz</td>
</tr>
<tr>
<td>Pulse width (ns)</td>
<td><= 50ns</td>
<td><= 50ns</td>
</tr>
<tr>
<td>Transverse Mode</td>
<td>TEM0o</td>
<td>TEM0o</td>
</tr>
<tr>
<td>Longitudinal mode</td>
<td>Single frequency</td>
<td>Single frequency</td>
</tr>
<tr>
<td>Frequency Control accuracy</td>
<td><2MHz</td>
<td>2MHz</td>
</tr>
</tbody>
</table>
Summary

• ESTO funded 2-micron Doppler lidar technology under LRRP was heavily leveraged in developing high energy, pulsed 2-micron coherent lidar system for ground-based CO₂ profiling. The system was field tested in Wisconsin during 2007

• 2-micron team has successfully developed a double-pulsed, high energy coherent DIAL system and demonstrated ground based measurement

• Accurate laser wavelength control and switching has been demonstrated, which meets the frequency stability and accuracy requirement for the CO₂ DIAL

• The NASA LaRC developed Ho pulse laser meets or exceeds the generally accepted requirements of a direct detection 2μm IPDA system, which can provide adequate CO₂ column density measurements from space

• The pulsed lidar transmitter architecture, energy, repetition rate, line width, frequency control are all suitable for space application without major scale up requirements.