Passive A-Band Wind Sounder (PAWS)
For Measuring Tropospheric Wind Velocity

Shane Roark, Robert Pierce, Paul Kaptchen
Philip A. Slaymaker, Pei Huang, Chris Grund

Earth Science Technology Conference
June 24, 2008
PAWS Overview

- **Instrument Incubator Program (2004)**

- **Objectives**
 - Demonstrate an instrument concept for passive measurement of tropospheric wind speed using Doppler shifts in oxygen absorption features

- **Motivation**
 - Improve global coverage of wind measurements
 - Improve weather forecasting
 - "number one unmet measurement objective for improving weather forecasts" NRC Decadal Survey

On-Orbit Viewing Concept

- LEO
- Lines of sight
- Limb 0-20 km
- Sun
- FOV1
- FOV2
- Tangent Limb Track
- Spacecraft Ground Track
- Position 1
- Position 2

Page_2
Heritage for PAWS

<table>
<thead>
<tr>
<th></th>
<th>WINDII</th>
<th>HRDI</th>
<th>PAWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Coverage</td>
<td>80 – 300 km</td>
<td>10 – 115 km</td>
<td>0 – 20 km</td>
</tr>
<tr>
<td>Vertical Interval</td>
<td>2 km</td>
<td>2.5 km</td>
<td>1 km</td>
</tr>
<tr>
<td>Horiz. Cell Size</td>
<td>140 km</td>
<td>500 km</td>
<td>250 km</td>
</tr>
<tr>
<td>Spectral Signal</td>
<td>Emission</td>
<td>Absorption</td>
<td>Absorption</td>
</tr>
<tr>
<td>Target Species</td>
<td>O and OH</td>
<td>O₂ B and γ Bands</td>
<td>O₂ A-Band</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>Imaging Michelson, fixed FOV</td>
<td>Triple Fabry-Perot</td>
<td>Imaging Michelson, fixed FOV</td>
</tr>
<tr>
<td>Meas. Approach</td>
<td>Large OPD, scan across one period</td>
<td>Gimbal telescope Angle/gap scan</td>
<td>Large OPD, fixed tilted mirror</td>
</tr>
<tr>
<td>Accuracy</td>
<td>~ 5 m/s</td>
<td>~ 3 to 12 m/s</td>
<td>~ 5 m/s (TBD)</td>
</tr>
</tbody>
</table>

Upper Atmosphere Research Satellite

- Wind Imaging Interferometer (WINDII) — Sep 1991 to Dec 2005
- High-Resolution Doppler Imager (HRDI) — Sep 1991 to ~2000
PAWS Instrument Approach

Limitations of the Technique
- Daytime-only measurements
- Will not provide the accuracy, precision, or spatial resolution anticipated for Doppler lidar

Potential Advantages of the Technique
- Simple components with flight heritage
- Low cost, risk, and platform requirements, and insensitive to spacecraft altitude
- Much better wind data than is currently available
Measurement Approach
Oxygen A-Band Transmission & Line Selection

- Lines are in a clear region of the atmospheric absorption spectrum
- Lines are extremely sharp and well resolved
- Wide range of line strength is available to optimize SNR
- Oxygen is an excellent tracer molecule for the troposphere
- A-band wavelength region is compatible with technology for high spectral resolution
Measurement Approach
Detecting Doppler Shift with a Michelson Interferometer

\[\delta v = v_0 \frac{u_w}{c} \approx 10 \text{ of } fm \]

\[\delta \phi = 2\pi (OPD)v_0 \frac{u_w}{c} + F(\text{OPD}) \]
Years 1 and 2: PAWS Breadboard and Analysis

Path-finding tool – sacrifices stability for versatility
Years 1 and 2: Lessons Learned

- Breadboard very sensitive
 - Need to improve stability by 100x
 - Wind speed error ± 20 m/sec
- Require extremely rigid construction
- Combining air-spaced etalon and Michelson reduces sensitivity to pressure and temperature
- Temperature and pressure stability
 - 0.07 K and 0.7 Torr = 0.5 m/sec EDS
- Spatially homogeneous light sources
- Using an absorption doublet doubles the SNR
- The shot noise limited wind speed detection is about 0.1 m/sec
- Optical path difference of 1.5 cm with one etalon (baseline)
- Demo and calibration requires wind tunnel and deep absorption
Engineering Unit Diagram

- Modular, Fiber-Coupled Design
- Emphasizes Stability
- Three Vertical Elements in FOV
Engineering Unit Filtering Approach

- **Pre-Filter (0.22 nm FWHM)**
 - Stability is critical
 - Fixed-spacing ideal for flight, but too expensive for IIP to achieve nm spacing tolerance
 - Tuning is required for EU
 - Angle tuning is not desirable due to field dependence of filter function
 - Pressure tuning is complicated and less compatible with space platform
 - PZT tuning allows normal incidence and high sensitivity

- **Filter: Air-Spaced Etalon**
 - Centered near 13100 cm\(^{-1}\) (763.35 nm)
 - Modest finesse requirement
Engineering Unit Filter Section

- **Modular Filter Section**
 - Simplifies design; Improves versatility
- **External aluminum housing (± 0.7K)**
- **Internal ceramic housing**
 - Low CTE & thermal conductivity; stiff
- **Etalon(s) bonded to ceramic (± 0.07K)**

- **Etalon Tuning**
 - Maximize metrology signal on CCD
 - CCD readout to PZT driver to tune etalon

- **Etalon Stabilization**
 - Capacitance sensor to PZT to hold capacitance
External aluminum housing (± 0.7K)
- Internal ceramic housing
 - Low CTE & thermal conductivity; stiff
- Components bonded to ceramic housing

Cube beam splitter and Zerodur mirror
- Hydroxide catalysis bonded to Zerodur base
- Temperature controlled to ± 0.07K
Engineering Unit Laboratory Testing

- Instrument sealed in pressure-stabilized chamber
- LED source provides artificial sunlight
- Telecom fiber optic switches provide differential wind measurement and metrology source injection
Wind Tunnel for Laboratory Testing

- Less than 2 dB loss round trip
- ~50-m path will give ~80% absorption at 763 nm
- Easily produces ~20 m/sec air flow
Summary and Conclusions

- **PAWS targets the troposphere, so absorption lines are used rather than emission**
 - Narrow absorption lines buried in a relatively broad background signal
 - Complicates the sensitivity of the measurement
 - Imposes tough requirements on system stability

- **Engineering unit approach**
 - Air-spaced etalon and Michelson interferometer
 - Fiber coupled, modular design
 - Rigid, low thermal expansion housing
 - Measure two absorption lines: doubles SNR
 - Minimize temperature and pressure fluctuations
 - Engineering unit will be capable of measuring wind at 5 m/s with the wind tunnel

- **Path to Flight**
 - Fixed-space etalons (is tuning required?)
 - Two or more filter modules of optimal performance over 20-km limb
 - A-band emission lamp for on-board calibration
 - Couple with A-band spectrometer for peak shape (pressure, cloud height)