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Outline

• Background & Objectives

• Optical Design

• Mechanical Design

• Optical Performance

• Tolerance to Space Radiation

• Hybrid design

• Summary
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Wind Mission Requirements

km80Along track integration per LOS (max)

km10Along track sampling (max)

Degree30-150Allowed angular separation of LOS wind pair, projected to a 

horizontal plane

-2=pairNumber of LOS wind measurement perspectives for horiz

windA calculation

km0.25Vertical Sampling (max)

km50Maximum allowed horizontal separation of LOS wind pair

km350Along track repeat distance

m/s100

50

Maximum design horizontal wind speed: 

Above BL

Within BL

km10Horizontal location accuracy of LOS wind measurements

km0.2Vertical location accuracy of LOS wind measurements

Hours1.33 ; 2.75Data product latency

%TBD. Define for 

cloud free

Minimum wind measurement success rate

m/s4

3

2

Velocity error            

Tropopause to top of DOR (18-24)

Top of BL to tropopause (2-18)

Surface to top of BL (0-2)

-2Number of horizontal wind tracks

km3

2

0.5  

Vertical resolution:

Tropopause to top of DOR (18-24)

Top of BL to tropopause ( 2-18)

Surface to top of BL (0-2)

km0-24Vertical depth of regard (DOR)

UnitsStudy Baseline
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Minimum wind measurement success rate
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Velocity error            

Tropopause to top of DOR (18-24)
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-2Number of horizontal wind tracks

km3
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0.5  

Vertical resolution:

Tropopause to top of DOR (18-24)

Top of BL to tropopause ( 2-18)

Surface to top of BL (0-2)

km0-24Vertical depth of regard (DOR)

UnitsStudy Baseline

Scanning requirements:

Fore/Aft views to target

sample volume provide

horizontal wind

information x 2 tracks

= 4 FOVs
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Competing Technologies

(prior art)

• Conventional telescope

w/ rotating mount

• Multiple telescopes

• Scanning flat mirror

• Rotating wedge prism

• Rotating Fresnel prism

• Rotating HOE

• Multiplexed HOE /

SHADOE
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Holographic Optical Element

Scanning Telescope

Holographic Airborne
Rotating Lidar Instrument
Experiment (HARLIE)
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Angle multiplexed HOEs

Single HOE geometry 6 HOE exposure geometry
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ShADOE ACT Objectives

•Enable lidar along 4 lines of site for atmospheric Doppler
and surface mapping applications from space using ShADOE
technology to minimize telescope weight & motion

•Investigate radiation effects

•Demonstrate FOV < 100 microrad at 355 nm.

•Demonstrate 355 nm ShADOE breadboard telescope
system

•Demonstrate diffraction limited FOV (<30 microrad for 20
cm diam.) at 2054 nm.

•Conceptually design a multi-wavelength ShADOE telescope
for use with 355 & 2054 nm.

•Advance the ShADOE TRL from 2 to 4.
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Optical Design – One Path
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ShADOE Multiplexed Telescope
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XMT

laser

BEAM

EXPANDER

FOLD

MIRRORS

MOTOR

ROTATING

MIRRORS

COAXIAL TRANSMITTER AND RECEIVER
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ShADOE Telescope Breadboard

Updated design-laser path (1OF2)

SELECTOR MIRROR

ROTATIONAL

STAGE

FIXED

MIRROR

INCOMING LASER

CONTROLLED VIA QUICK

BEAM STEERING MIRROR

BETWEEN LASER &

TELESCOPE.

VENDOR

GIMBAL

MOUNT(S)
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ShADOE Telescope Breadboard

Updated design-laser path (2OF2)
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ShADOE Telescope Breadboard

Updated design-returned light

VENDOR

GIMBAL

SELECTOR MIRROR

RISELY
MOUNT(S)

VENDOR MOUNT

TIP/TILT &

CLOCKING

VENDOR

TRANSLATION STAGE

1AXIS = FOCUS

*FOCAL LENS

*BEAM SPLITTER

*FIBER MOUNT

*MOUNTS NOT SHOWN, SLIDES UPCOMING
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Holographic Image Correction

• Image blurred slightly due to
atmospheric scintillation

• Bright core is 15-20 μrad wide with
some halo/scatter around the core

• Phase retrieval analysis indicates
~0.5 wave error at 355 nm

• 93% of the energy within 50 μrad
diameter circle

• For comparison, uncorrected
HOEs have spots on the order of
200 urad.50 μrad circle
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Materials Evaluation

• Motivation: evaluate HOE materials for space qualification

• Radiation Types:

– Gamma (to simulate up to 2 MeV electrons)

– Proton (5, 20, and 200 MeV)

– 355 nm UV laser – damage thresholds, long term exposure effects, and thermal effects

• Initial Findings: Gamma and high E proton measurements demonstrated need for
better substrate material; inconclusive for DCG.

• Recent Findings: Repeated radiation tests using UV-grade fused silica substrates.

– No measurable effect from Gamma or high E proton radiation.

– Epoxy damages first from high energy UV.

– DCG only absorbs 6% at 355 nm, 0% at 2053 nm.

• Status:

– Completed Gamma, high, med, low E protons, UV damage thresholds

– Performing thermal blooming threshold test in response to mid-power density UV
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UVFS Post 2000 krad

GammaPre & Post  Gamma-Ray Irrad.
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UVFS Post 2000 krad

GammaChange in Transmittance Due to 2000 Krad Gamma Radiation
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UVFS Post-Gamma 355 nm response:

No measurable effect

Efficiency vs Gamma Radiation
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High Power UV Damage

Thresholds

1.0 W/cm210 minJGS2 + DCG

1.0 W/cm210 minJGS2 HOE

10 min

10 min

10 min

Exposure Time

1.0 W/cm2JGS2 + epoxy

>>3.3 W/cm2JGS2 only

>>3.3 W/cm2UVFS only

Power DensitySample
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High UV Energy Density

Damage Test

1238.831.4331.433

5212.336.371.274

570.832.130.425

10593.540.354

1554.334.890.326

2049.55.940.297

No of

Shots

Peak Power

Density

(MW/cm^2/p

ulse)

Total

Energy

Density

(J/cm^2)

Single Pulse

Energy Density

(J/cm^2)
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NWOS Instrument Design

Study
• The NPOESS Integrated Program Office sponsored a study in the

GSFC Instrument Design Lab to explore accommodation of a hybrid

wind lidar on the next generation NPOESS (nominal launch date

2024 following NASA/NOAA demo mission).

• The NPOESS Wind Observing Sounder (NWOS) study examined

several concepts to minimize the mass, volume and power

requirements of the hybrid instrument, including the potential use of

a 2 wavelength, 4 FOV ShADOE telescope.

• Results from the ShADOE ACT program were used to develop a

baseline concept for this option.

• The study, supported by GSFC, LaRC and NOAA, was carried out

February 21-25, 2008.
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Hybrid design from IDL

Study
• 2 micron equivalent to 50 cm telescope

• 355nm equivalent to 70cm telescope

• Optical Efficiency = 0.9

• Hologram Efficiency = 0.75

• Overall Efficiency = 0.9 x 0.75 = 0.675

124.5cm
72.4cm
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• A 4 FOV, Multi-wavelength (355 nm and 2 micron)

ShADOE based wind lidar is shown re-designed, scaled &

refolded to fit on the NPOESS nadir deck

NWOS ShADOE Concept
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• Requirements derived from demo Doppler Lidar Wind Mission recommended in the

NRC Earth Science Decadal Survey (January 2007).

• ShADOE promises to reduce weight, power & torque versus conventional

mechanically rotated telescope system.

• Hybrid ShADOE concept explored in next-gen NPOESS instrument design study.

• Laboratory testing of the ShADOE/HCP prototype shows very good results can be

obtained using the holograpically corrected ShADOE in the uv.

• Extensive materials test plan implemented to evaluate effects of radiation (gamma,

proton) and uv exposure on HOE materials.

- HOE samples made using UV fused silica substrates show little effects of

gamma and proton exposure levels  up to 2 Mrad

- UV laser damage thresholds > 1 W/cm2 over 10 minutes; >1.4 J/cm2 single shot.

Optical epoxy is limiting material for high energy pulsed UV – does not prevent

its use but affects optical design of transmit optics.

• Preparing for delivery of final optics set, expected this summer.

Summary
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End ACT I
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Backup
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Conclusions from Phase

Retrieval

• Wavefront error of the system is ~0.5

waves at 355 nm

• This is a vast improvement over the single

HOE primary and would allow a smaller

instrument FOV.

• The largest aberration is astigmatism
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Sensitivity Analysis of Current

HCP

50

60

70

80

90

100

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

HCP translation

%
 E

n
c
ir

c
le

d
 E

n
e
rg

y

x-decenter

y-decenter

z-decenter

Using these sensitivities to select step size and range for adjustments
in the mounts.
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HCP Positioning Tolerances

1 mrad

1 mrad

1 mrad

120 m

40 m

Value based on

Enc.

Energy

Calc.

Moves the perimeter of the HCP 10 m, equivalent to X-Y translation

error.

0.5 mradRotation about Z axis (clocking

error)

This is just like tip except in the plane of diffraction. On one edge of the

HCP the errors will be partially concelled because of the

converging beam, but errors will double on the opposite side, so

we go with half the maximum tip error.

1 mradTilt (rotation about Y axis)

The main effect is the equivalent z-axis translation near the edge of the

HCP. The maximum tip angle is  =  Z/(a/2) where a is the

HCP aperture diameter. a = 4cm.

1 mradTip (rotation about X axis)

Wavefront corrective structures in the HCP must match the

corresponding wavefront errors in the converging beam to within

10 m in X&Y according to the above. The position of the

wavefront error structures in X,Y change in proportion to the

position along Z by  X = Z  * A/(2f), where A is the primary

aperture diameter (40 cm) and f is the primary focal length (1 m).

40  mZ , Translation along Z axis

Based on above argument: .04m/fringe * 1/10th wave * 1/10X

magnification. Define X-axis as in the diffraction plane, normal to

Z axis.

10 mX,  Y, Translation along  X &

Y axis

Proximity of corrector plate to focal plane and spatial scale of

wavefront errors. To correct 1000 waves/m (175 rad blur) of

error at the HOE requires ~1/10th wave positioning error (at

HOE) times system magnification. Secondary optics are 91.4

cm from the HOE, for a magnification of ~10X.

As belowMechanical positioning

tolerances on corrector

plates, relative to

primary ShADOE optic.

BasisEstimateParameter
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1st SHADOE with HCP


