
Variable Precision Analysis for FPGA Synthesis
Mark L. Chang and Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, Washington

Email: {mchang,hauck}@ee.washington.edu

Abstract— In this paper, we present a methodology for accurate
estimation of the precision requirements of an algorithm subject
to user-defined area and error constraints. We derive area-
to-error models of a general island-style FPGA architecture
and present methods for incorporating these models into the
decision-making process of precision optimization. Finally, we
present some preliminary results describing the effectiveness of
our techniques in guiding users to find a suitable area-to-error
tradeoff.

I. I NTRODUCTION

With the widespread growth of reconfigurable computing
platforms in education, research, and industry, more software
developers are being exposed to hardware development. Many
are seeking to achieve the enormous gains in performance
demonstrated in the research community by implementing
their software algorithms in a reconfigurable fabric. For the
novice hardware designer, this effort usually begins and ends
with futility and frustration as they struggle with unwieldy
tools and new programming paradigms.

One of the more difficult paradigm shifts to grasp is the
notion of bit-level operations. On a typical FPGA fabric,
logical and arithmetic operators can work at the bit level
instead of the word level. With careful optimization of the
precision of the datapath, the overall size and relative speed
of the resulting circuit can be dramatically improved.

In this paper we present a methodology that broadens
the work presented in [1]. We begin with a more detailed
background of precision analysis and previous research efforts.
We describe the problem and our methodology for finding
the precision of a circuit’s datapath. Finally, we present our
results and conclusions in the framework of our designer-
centric precision analysis tool, Précis[1].

II. BACKGROUND

General-purpose processors are designed to perform opera-
tions at the word level, typically 8, 16, or 32 bits. Supporting
this paradigm, programming languages and compilers abstract
these word sizes into storage classes, or data-types, such
as char, int, and float . In contrast, most mainstream
reconfigurable logic devices, including FPGAs, operate at the
bit level. This allows the developer to tune datapaths to any
word size desired. Unfortunately, choosing the appropriate size
for datapaths is not trivial. Choosing a wide datapath, as in
a general-purpose processor, usually results in an implemen-
tation that is larger than necessary. This consumes valuable

resources and potentially reduces the performance of the
design. On the other hand, if the hardware implementation uses
too little precision, errors can be introduced at runtime through
quantization effects, typically via roundoff or truncation.

To alleviate the programmer’s burden of doing manual
precision analysis, researchers have proposed many different
solutions. Techniques range from semi-automatic to fully-
automated methods that employ static and dynamic analysis
of circuit datapaths.

A. The Least-Significant Bit Problem

In determining the fixed-point representation of a floating-
point datapath, we must consider both the most-significant
and least-significant ends. Reducing the relative bit position
of the most-significant bit reduces the maximum range that
the datapath may represent. On the other end, increasing the
relative bit position of the least-significant bit (toward the
most-significant end) reduces the maximum precision that the
datapath may attain. For example, if the most-significant bit
is at the 27 position, and the least-significant bit is at the
2−3 position, the maximum value attainable by an unsigned
number will be28 − 1 = 255, while the precision will be
quantized to multiples of2−3 = 0.125.

Having a fixed-point datapath means that results or oper-
ations will exhibit some quantity of error compared to their
infinite-precision counterparts. This quantization error can be
introduced on both the most-significant and least-significant
sides of the datapath. If the value of an operation is larger than
the maximum value that can be represented by the datapath,
the quantization error is typically a result of truncation or
saturation, depending on the implementation of the operation.
Likewise, error is accumulated at the least-significant end of
the datapath if the value requires greater precision than the
datapath can represent, resulting in truncation or round-off
error.

Previous research includes [2], [3], which only performs
the analysis on the most-significant bit position of the dat-
apath. While this method achieves good results, it ignores
the potential optimization of the least-significant bit position.
Other research, including [4], [5] begin to touch on fixed-point
integer representations of numbers with fractional portions.
Finally, more recent research, [6], [7] begin to incorporate
error analysis into the overall analysis of the fractional part of
the datapath elements.

Most of the techniques introduced deal with either limited
scope of problem, such as linear time-invariant (LTI) systems,
and/or perform the analysis completely automatically, with
minimal input from the developer. While again, these methods
achieve good results, it is our belief that the developer should
be kept close at hand during all design phases, as there are
some things that an automatic optimization method simply
cannot account for.

Simply put, a “goodness” metric must be devised in or-
der to guide an automatic precision optimization tool. This
“goodness” function is then evaluated by the automated tool to
guide its precision optimization. In some cases, such as image
processing, a simple block signal-to-noise ratio (BSNR) may
be appropriate. In many cases, though, this metric is difficult or
impossible to evaluate programmatically. A human developer,
therefore, has the benefit of having a much greater sense of
context in evaluating what is an appropriate tradeoff between
error in the output and performance of the implementation.
In this paper we provide a methodology for performing
the least-significant-bit analysis in a user-guided fashion that
utilizes both area and error to provide the user with enough
information to make informed optimization decisions.

B. Models and Methodology

The observation that the relative bit position of the least-
significant bit introduces a quantifiable amount of error over
a true floating-point or infinite-precision datapath is crucial
to our methodology. As described in [6], what can be con-
sidered an error-analysis phase must be performed in order
to determine the cumulative error of the datapath. Whereas
[6] utilizes a completely automated approach—inferring the
resolution required of intermediate operations in compiler
passes and through user-specification of tolerable error at
the output nodes—we propose a more user-guided approach
that, in addition to accounting for error accumulated in the
datapath, provides the user with a more powerful methodology
to analyze the area-to-error tradeoff at each intermediate node.

We begin our discussion with the simpler case of an
integer-only datapath. We will describe our number format
and notation, and the corresponding hardware error and area
models. We then extend this idea to include binary fixed-point
notation in order to cope with a real-valued datapath.

III. E RRORMODELS

Consider an integer value that isM ′ bits in length. This
value has an implicit binary point at the far right—to the right
of the least-significant bit position. By truncating bits from the
least-significant side of the word, we reduce the area impact of
this word on downstream arithmetic and logic operations. We
could simply truncate the bits from the least-significant side to
reduce the number of bits required to store and operate on this
word, but a simpler solution would be to replace the bits with
zeros instead. Thus, for anM ′-bit value, we have the notation
Am0p. This is an integer-valued word that hasm correct bits
andp zeros inserted to signify bits that have been effectively
truncated, giving us anM ′ = m + p-bit word.

+ C

pmA 0

qnB 0

12..0 −p

12..0 −q

222..0 −+ qp

+ C

pmA 0

qnB 0

12..0 −p

12..0 −q

222..0 −+ qp

Fig. 1. Error model of an adder

* C

pmA 0

qnB 0

12..0 −p

12..0 −q

qppq EEBEAE −+..0

Fig. 2. Error model of a multiplier

Having performed a reduction in the precision that can be
obtained by this datapath with a substitution of zeros, we have
introduced an error into the datapath. For anAm0p value,
substitutingp zeros for the lower portion of the word, gives
us an error range of0..2p − 1. At best, if the bits replaced
by zeros were originally zeros, we have incurred no error.
At worst, if the bits replaced were originally ones, we have
incurred the maximum error.

This error model can be used to determine the effective
error of combining quantized values in arithmetic operators. To
investigate the impact, we will discuss an adder and multiplier
in greater detail.

A. Adder Error Model

An adder error model is shown in Fig. 1. The addition of
two, possibly quantized values,Am0p + Bn0q, results in an
output,C, which has a total ofmax(M ′, N ′) + 1 bits, where
min(p, q) of them are substituted zeros at the least-significant
end. Perhaps more importantly, the range of error forC is the
sum of the error ranges ofA and B. This gives us an error
range of0..2p + 2q − 2 at the output of the adder.

B. Multiplier Error Model

Just as we can derive an error model for the adder, we do the
same for a multiplier. Again we have two possibly quantized
input values,Am0p ∗ Bn0q, multiplied together to form the
output, C, which has a total ofM ′ + N ′ bits, wherep + q
of them are substitute zeros at the least-significant end. This
structure is shown in Fig. 2.

The output error is slightly more complex in the multiplier
structure than the adder structure. The input error ranges are
the same,0..2p − 1 and 0..2q − 1 for Am0p and Bn0q,
respectively. Unlike the adder, multiplying these two inputs
together requires us to multiply the error terms as well, as

+ C

pmA 1

qnB 0

0)..12(−− p

12..0 −q

12)..12(−−− qp

+ C

pmA 1

qnB 0

0)..12(−− p

12..0 −q

12)..12(−−− qp

Fig. 3. Normalized error model of an adder

shown in (1).

C = A ∗ B

= (A − (2p − 1)) ∗ (B − (2q − 1))
= AB − B(2p − 1) − A(2q − 1) + (2p − 1)(2q − 1)

(1)

The first line of (1) indicates the desired multiplication oper-
ation between the two input signals. Since we are introducing
errors into each signal, line two shows the impact of the error
range ofAm0p by subtracting2p−1 from the error-free input
A. The same is done for inputB.

Performing a substitution ofEp = 2p − 1 andEq = 2q − 1
into (1) yields the simpler (2):

C = AB − BEp − AEq + EpEq

= AB − (AEq + BEp − EpEq)
(2)

From (2) we can see that the range of error resulting on the
outputC will be 0..AEq + BEp − EpEq. That is to say the
error that the multiplication will incur is governed by the actual
correct value ofA andB, multiplied by the error attained by
each input. In terms of maximum error, this occurs when we
consider the maximum attainable value of the inputs multiplied
by the maximum possible error of the inputs.

C. Renormalization and Rethinking Error

Looking more closely at the error introduced in both of the
models in Fig. 1 and Fig. 2, we see that the error is skewed, or
biased, in one direction—positively. As we continue through
datapath elements, if we maintain the same zero-substitution
policy for bit-width reduction, our lower-bound error will
remain zero, while our upper bound will continue to skew
to larger positive numbers.

In some cases, a more useful error bias would be to attempt
to “center” the range of error on a good average case. For
example, if the developer knows that an input signal has a
non-uniform distribution, they can bias the error such that
the most likely case will achieve zero relative error. Consider
this procedure “renormalization”. An example with an adder
structure is shown in Fig. 3.

For instance, if an algorithm is known to have a pre-
determined steady-state value, then the developer can bias the
error term by inserting a pattern other than zeros to have this
steady-state value fall in the center of the error range.

As with the adder structure, renormalization of the multi-
plier is possible by using different values for least-significant
bit substitution, yielding an error range that can biased. Fig. 4
depicts a normalization centered on zero by substituting ones
instead of zeros for inputB.

* C

pmA 0

qnB 1

12..0 −p

0)..12(−− q

)2(
2

)..2(
2 q

p
p

q EB
E

EA
E

+−−

Fig. 4. Normalized error model of a multiplier

Renormalization is perhaps most effective when we change
the way error in our system is quantified. Renormalization
allows us to move the center of the error output range to any
value. If we consider the error as thenet distance from the
correct value, for a given tolerance of error on the output,
we can perform more constant substitutions on the inputs
than if the error was skewed only positively. In essence, if
error is the net distance from correct, we have effectively
doubled our error range for the same number of input constant
substitutions.

For example, in Fig. 1, a substitution ofp, q zeros results
in an error range of0..2p + 2q − 2. By rethinking the nature
of error, with renormalization, this same net distance from
the real value can be achieved with more bit substitutions,p+
1, q+1, on the input. This will yield a smaller area requirement
for the adder. Likewise, the substitution ofp, q zeros with
renormalization now incurs half the error on the output,−(2p−
1)..2q − 1, as shown in Fig. 3.

IV. H ARDWARE MODELS

In the previous section we derived error models for adder
and multiplier structures. Error is only one metric with which
a developer will base optimization decisions upon. Another
crucial piece of information is hardware cost—area.

By performing substitution rather than immediate trunca-
tion, we introduce a critical difference in the way hardware
will handle this datapath. Unlike the case of immediate
truncation, we do not have to change the implementation of
downstream operators to handle different bit-widths on the
inputs. Likewise, we do not have to deal with alignment issues,
as all inputs to operators will have the same location of the
binary point.

As we reduce the number of bits on the input to, for
instance, an adder, the area requirement of the adder decreases.
The same relationship holds true when we substitute zeros in
place of variable bits on an input. This is true because we can
simply use wires to represent static zeros or static ones, so the
hardware cost in terms of area is essentially zero.

If the circuit is specified in a behavioral fashion using
a hardware description language (HDL), this optimization
is likely to fall under the jurisdiction of the vendor place
and route tools. Fortunately, this simple constant propagation
optimization utilizing wires is implemented in most current
vendor tools.

In the next sections we outline the area models used to
perform area estimation of our datapath. We will assume a
simple 2-LUT architecture for our target FPGA and validate
this assumption in the following sections.

A A A A A A A 0
+ B B B B B 0 0 0 0

H F F F H W W W W

A A A A A A A 0
+ B B B B B 0 0 0 0

H F F F H W W W W

Fig. 5. Adder hardware requirements

TABLE I

ADDER AREA

Number Hardware

max(|M ′ − N ′|, 0) half-adder

max(M ′, N ′) − max(p, q) − |M ′ − N ′| − 1 full-adder

1 half-adder

max(p, q) wire

A. Adder Hardware Model

In a 2-LUT architecture, a half-adder can be implemented
with a pair of 2-LUTs. Combining two half-adders together
and adding an OR gate to complete a full-adder requires five 2-
LUTs. To derive the hardware model for the adder structure as
described in previous sections, we utilize the example shown
in Fig. 5.

Starting at the least-significant side, all bit positions that
overlap with zeros need only wires. The next most significant
bit will only require a half-adder, as there can be no carry-in
from any lower bit positions, as they are all wires. For the rest
of the overlapping bit positions, we require a regular full-adder
structure, complete with carry propagation. Finally, at the
most-significant end, if there are any bits that do not overlap,
we require half-adders to add together the non-overlapping
bits with the possible carry-out from the highest overlapping
full-adder bit.

The relationship described in the preceding paragraph is
generalized into Table I, using the notation previously outlined.
For the example in Fig. 5, we have the following formula to
describe the addition.

Am0p + Bn0q

m = 7, p = 1, n = 5, q = 4

This operation requires two half-adders, three full-adders, and
four wires. In total, 19 2-LUTs.

With the equations in Table I, we can plot the area and
error impact of zero substitution. In Fig. 6, the area is plotted
as a contour graph against the number of zeros substituted
into each of two 32-bit input words. The contour reflects
our intuition that as more zeros are substituted into the input
words of an adder, the area requirements drop. The plot also
highlights the fact that we can manipulate either input to
achieve varying degrees of area reduction. Fig. 8 also follows
intuition, showing clearly that as more zeros are substituted,
the normalized error rate increases.

0

5

10

15 0
5

10
15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zeros in B

Area of 32 bit add (A+B)

Zeros in A

N
or

m
al

iz
ed

 a
re

a

Fig. 6. Adder area vs. number of zeros substituted

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

Adder LUTs vs. Zeros

Number of zeros substituted

LU
Ts

 (X
ili

nx
 V

irt
ex

)

0 2 4 6 8 10 12 14
0

50

100

150
Adder Model LUTs vs. Zeros

Number of zeros substituted

LU
Ts

 (M
od

el
 o

f X
ili

nx
 V

irt
ex

)

Fig. 7. Adder model verification

To verify our hardware models against real-world imple-
mentations, we implemented the adder structure in Verilog on
the Xilinx Virtex FPGA using the vendor-supplied place and
route tools. Choosing zero-substituted inputs along the spine
of Fig. 6, meaning equal zero substitution for both inputs,
we see in Fig. 7 that our model closely follows the actual
implementation area.

B. Multiplier Hardware Model

We use the same approach to characterize the multiplier. A
multiply consists of a multiplicand (top value) multiplied by a
multiplier (bottom value). The hardware required for an array
multiplier consists of AND gates, half-adders, full-adders, and
wires. The AND gates form the partial products, which in turn
are inputs to an adder array structure as shown in Fig. 10.

Referring to the example in Fig. 9, each bit of the input that
has been substituted with a zero manipulates either a row or
column in the partial product sum calculation. For each bit of
the multiplicand that is zero, we effectively remove an inner
column. For each bit of the multiplier that is zero, we remove
an inner rows. Thus:

Am0p ∗ Bn0q

m = 3, p = 1, n = 2, q = 2

is effectively a 3x2 multiply, instead of a 4x4 multiply. This
requires three half-adders, one full-adder, and six AND gates,

0

5

10

15 0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zeros in B

Error of 32 bit add (A+B)

Zeros in A

N
or

m
al

iz
ed

 e
rr

or

Fig. 8. Adder error vs. number of zeros substituted

A A A 0
x B B 0 0

A0 A0 A0 00

A0 A0 A0 00
AB AB AB 0B

+ AB AB AB 0B

Fig. 9. Multiplication example

for a total of 17 2-LUTs. This behavior has been generalized
into formulas shown in Table II.

Again, Table II leads us to extrapolate the area and error
impact of zero substitution. These plots are found in Fig. 11
and Fig. 12, respectively. Their interpretation is similar to
that of the adder structure, and their behavior has likewise
been verified with hardware implementation on Xilinx Virtex
architectures, as shown in Fig. 13.

V. PRECISIONSTEERING

Armed with models describing the area and error impact of
reduced-precision datapaths, we can utilize this more detailed
information to aid in manual precision analysis. In particular,
we can explore a range of area-to-error tradeoffs.

We can now compute, at each operation node, the contribu-
tion made to the overall area and error. It follows that given

HAFAFAHA

HAFAFAFA

HAFAFAFA

0,00,11,00,21,10,31,21,3

2,02,12,22,3

3,03,13,23,3

p0p2p3p4p5p6p7 p1

Fig. 10. Multiplication hardware requirements

TABLE II

MULTIPLIER AREA

Number Hardware

min(m, n) + 1 half-adder

mn − m − n full-adder

mn AND

p + q wire

0

5

10

15 0
5

10
15

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zeros in B

Area of 32 bit multiply (A*B)

Zeros in A

N
or

m
al

iz
ed

 a
re

a

Fig. 11. Multiplier area vs. number of zeros substituted

0

5

10

15 0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zeros in B

Error of 32 bit multiply (A*B)

Zeros in A

N
or

m
al

iz
ed

 e
rr

or

Fig. 12. Multiplier error vs. number of zeros substituted

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

Multiplier LUTs vs. Zeros

Number of zeros substituted

LU
Ts

 (X
ili

nx
 V

irt
ex

)

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

Multiplier Model LUTs vs. Zeros

Number of zeros substituted

LU
Ts

 (M
od

el
 o

f X
ili

nx
 V

irt
ex

)

Fig. 13. Multiplier model verification

different precisions of input signals, the contribution to area
and error from different branches may be unequal. Therefore,
we may be able to “steer” the error toward one branch over
another.

This notion of trading error in one branch for another proves
useful if, for example, the computation performed in one
branch is used in a conditional expression. In some cases, it
would be wise to allocate more precision to that decision-
making branch so it is more likely to choose the correct
answer. A similar example would be if three branches of
different length, and thus relative area consumption, converged
together. An area savings might be realized if the developer
steered the error at the output toward the branch with the most
operations. Thus, an area savings could possibly be affected
over more operator nodes, reducing overall area requirements.
Finally, given several branches of computation contributing to
a single output, it may be in the interest of the developer to
have the error evenly balanced across all incoming branches,
regardless of their length and complexity.

To illustrate the idea of error “steering”, we present an
illustrated example. Fig. 14 depicts a slightly biased datapath.
At the final adder,+4, one branch,E is short, while the other
branch, the output from+3 is longer. To set a baseline, assume
that all inputs are 4-bit values without any inherent error. This
results in a total of 77 2-LUTs consumed.

Assume the developer has found that an error range of
0..8 is tolerable at the output. If the goal is to reduce area
requirements, then we may choose to steer the error at node
+4. As previously discussed, we may attempt three (and
possibly more) types of optimizations.

A. Towards shorter branch

If the longer branch were used to compute a conditional
expression, we can steer error away from that branch. For the
node+4, we can allocate an error range of0..7 to the lower
half, and0..1 to the upper half. If we again steer the error at
+3 down to+2, we can substitute a single zero on either of
the inputs to+2. This results in a total area requirement of 57
2-LUTs. The increase in error is accompanied by a decrease
in area, as expected.

B. Towards longer branch

Alternatively, the developer could steer the errortoward the
longest branch in order to realize an area savings. For node
+4, all of the 0..8 error can be steered to the upper branch.
From +3, another steering decision can be made, this time to
put 0..6 on the upper branch and0..2 on the lower branch.
This, in effect, gives us the inputs:

A202, B202, C301, D301, E400

This combination of inputs gives us a total area requirement
of 47 2-LUTs, a reduction over the previous steering example
while still incurring the same error range at the final node.

+1

A

B

+2

C

D

+3 +4

E

Fig. 14. Precision steering example

C. Balanced error

The final example illustrates keeping area constant while
reducing the error range. To achieve this, we utilize a more
balanced steering of error. Perhaps easier is to start at the
inputs. Here we can insert zeros uniformly across all inputs:

A301, B301, C301, D301, E301

This achieves error range at the input to+3 of 0..2 on both
branches, and0..4 on the upper input branch to+4 and0..1
on the lower branch. In total, this implementation gives us an
error range of0..5 and an area requirement of 57 2-LUTs.

VI. F IXED-POINT EXTENSION

Our previous discussion encompassed only integer-valued
datapaths. While this is a limitation, extending our format and
methodology to a real-valued datapath is not difficult.

In a fixed-point, or real-valued datapath, the binary point
may be anywhere. In our integer-valued datapath, the binary
point was implicitly at the least-significant end of the word.
This allowed us to ignore the task of alignment, as all words
were already aligned.

Re-alignment of input words to an operator is a simple
task, but has implications. Obviously, in order to align two
words whose binary point location differs, we simply right-
pad the word whose binary point location is further to the
right. In other words, we pad zeros to the right of the word
that has less precision. With aligned input words, we can
perform operations as described in previous sections. Since the
format of numbers in the system must be determined before-
hand, alignment can either be factored into the input signal, or
additional hardware can be inserted at points where alignment
will be necessary.

VII. G UIDELINES AND COMPLEXITIES

In the previous sections, we demonstrated how steering the
precision in even a simple datapath can have a significant
impact on the area requirements of an implementation. Ex-
tending this to much larger circuits with more primary inputs,
it becomes clear that guidelines to semi-automatic precision
analysis should be discussed.

When performing steering of error at operator nodes, the
area benefits are actually quantized to the number of whole-
bit substitutions that can be made at the inputs. For example,
an error range of0..2 cannot be fully utilized at a single input
to an adder. This is because the error introduced at an input is
governed by0..2p−1, as shown in Fig. 1. This only allows us
to substitute a single constant at the LSB position, giving us an
effective error contribution to the adder of0..1, which doesn’t
consume all the error allocated to this node. By contrast, an
error range of0..2 can be fully utilized if split between two
inputs, as was done in both§V-B and §V-C.

On the other hand, if the error cannot be distributed com-
pletely, we can reduce the overall output error by taking up the
slack in error. While not shown explicitly in our examples, it
is similar in effect to the example shown in§V-C. By starting
with uniform error at the inputs, we achieve an output error
range of0..5, better than the alloted0..8 that was tolerated by
the user.

Another demonstrated guideline that can be applied to semi-
automatic precision analysis is the fact that area benefits
increase as error is steered toward longer branches. This
follows from the fact that with more operator nodes, we have
more opportunity to reduce the area of ancestor nodes provided
that we can propagate whole-bit substitutions to the primary
inputs as discussed.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have presented our methodology for utilizing area
and error information in performing precision analysis. We
have derived mathematical models for the area and error of
operators that utilize reduced-precision inputs. We have shown
how these models can be used during precision analysis.
We have demonstrated the impact of performing this type of
analysis on both area and error. Finally, we have given basic
precision optimization guidelines for use when both area and
error model values are at hand.

We are currently extending our design-time precision anal-
ysis tool [1] to incorporate some of the ideas in this paper.
Some of the proposed enhancements include:

• Performing the calculation of area and error for a partic-
ular implementation automatically.

• Developing more models for common functions.
• Deriving default precision requirements of intermediate

nodes from user-supplied output error tolerance and input
error specifications.

• Providing an easy and intuitive method for adjusting
precision and observing the impact.

Furthermore, we hope to continue the development and
verification of our models. We also aim to implement real-
world benchmarks that demonstrate, more concretely, the
effectiveness of our methods.

REFERENCES

[1] M. L. Chang and S. Hauck, “Précis: A design-time precision analysis
tool,” in IEEE Symposium on Field-Programmable Custom Computing
Machines, 2002, pp. 229–238.

[2] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” inProceedings of the SIGPLAN
conference on Programming Language Design and Implementation, June
2000.

[3] M. W. Stephenson, “Bitwise: Optimizing bitwidths using data-range
propagation,” Master’s thesis, Massachusetts Institute of Technology, May
2000.

[4] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,”IEEE Trans-
actions on Signal Processing, vol. 43, no. 12, pp. 3087–3090, December
1995.

[5] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
C and C++ based digital signal processing programs,” inWorkshop on
VLSI and Signal Processing, Osaka, 1995.

[6] A. Nayak, M. Haldar,et al., “Precision and error analysis of MATLAB
applications during automated hardware synthesis for FPGAs,” inDesign
Automation & Test, March 2001.

[7] G. A. Constantinides, P. Y. Cheung, and W. Luk, “The multiple
wordlength paradigm,” inIEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 2001.

