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Abstract—This research project is developing micropro-
cessors that can autonomically handle hard (permanent) 
faults that occur during space missions. Rather than use 
macro-scale redundancy and incur severe power and hard-
ware overheads, we have developed low-cost solutions in 
the areas of error detection, fault diagnosis, and reconfigu-
ration around hard faults. 

I.  INTRODUCTION

NASA relies on microprocessors for its space mis-
sions. Microprocessors control life-support equipment, 
navigation, and on-board science experiments. Thus, 
microprocessor failure can have catastrophic conse-
quences. NASA has traditionally solved the problem of 
hard (permanent) hardware faults by using macro-scale 
redundancy, such as triple modular redundancy (TMR). 
TMR provides good reliability, but it incurs around 
200% overhead in terms of hardware and power con-
sumption. As microprocessors continue to use increas-
ing amounts of power, TMR becomes an unappealing 
solution for power-constrained environments, such as 
space missions.

Our goal in this work is to create microprocessors 
that can tolerate hard faults without adding significant 
redundancy. The key observation, made also by previous 
research [8, 10, 11], is that modern microprocessors, 
particularly simultaneously multithreaded (SMT) 
microprocessors [12] and multicore processors, already 
contain significant amounts of redundancy for purposes 
of enhancing performance. We want to use this redun-
dancy to mask hard faults, at the cost of a graceful deg-
radation in performance for microprocessors with hard 
faults. To achieve our goal, the microprocessor must be 
able to do three things while it is running. 

• It must detect and correct errors caused by faults 
(both hard and transient). 

• It must diagnose where a hard fault is and deconfig-
ure the faulty component in order to prevent its fault 
from being exercised. 

Our research group has made contributions in both 
of these areas, and we will discuss each in this paper. In 

Section II, we discuss low-cost error detection mecha-
nisms that use dynamic verification (online checking of 
invariants) to provide comprehensive coverage. In Sec-
tion III, we present our novel diagnosis schemes for 
microprocessors and multipliers. We also discuss how 
we provide reconfigurability after diagnosis. We con-
clude in Section IV.

II.  ERROR DETECTION AND CORRECTION

We have developed two low-cost approaches for 
error detection and correction. In Section A, we discuss 
dynamic verification of memory consistency, our 
approach for detecting all errors in the memory systems 
of multithreaded and multicore processors. In Section B, 
we discuss dynamic dataflow verification, which is a 
low-cost way to detect all microprocessor core errors 
that manifest themselves as dataflow errors. 

A.  Dynamic Verification of Memory Consistency

The memory system of a modern computer system is 
a complicated collection of interacting components. For 
a multicore processor (e.g., Intel CoreDuo) or a multi-
chip multiprocessor, the memory system includes 
DRAM memories, SRAM caches, an interconnection 
network over which the cores can communicate, and 
cache and memory controllers that implement a coher-
ence protocol for sharing data among the cores. We can 
add error detection mechanisms to each component 
(e.g., parity bits on messages that traverse the intercon-
nection network), but it is difficult and costly to com-
pose a large number of component error checkers such 
that they detect all errors, especially errors that involve 
interactions between components.

To address this problem, we have developed a 
scheme called Dynamic Verification of Memory Consis-
tency (DVMC). The key idea behind DVMC is to check 
invariants rather than components. All memory systems 
must implement a software-visible interface known as a 
memory consistency model [adve:tutorial:ieeecom-
puter:1996]. The consistency model is an invariant that 
an error-free memory system is guaranteed to enforce, 
and different architectures can specify different consis-
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tency models (e.g., the model for Intel IA-32 processors 
differs from the model for PowerPC processors). Thus, 
by dynamically verifying (i.e., checking at runtime) that 
the hardware is implementing its memory consistency 
model, DVMC can comprehensively detect all possible 
errors in the memory system. Any error in the memory 
system must manifest itself as a violation of the consis-
tency model and will thus be detected by DVMC. 

We have developed several implementations of 
DVMC [5, 6, 7]. We now have an implementation [7] 
that incurs minimal performance degradation and adds 
only about 1-8% extra traffic on the interconnection net-
work, as shown in Figure 1 for five benchmarks. This 
overhead is mostly a function of the specific cache 
coherence protocol. The details of this experiment are 
explained in our prior paper [7]. 

When DVMC detects an error, it restores the state of 
the system to a pre-error checkpoint using the SafetyNet 
backward error recovery mechanism [9].

B.  Dynamic Dataflow Verification

There already exist solutions for detecting errors 
within a processor core, but they are expensive. Repli-
cating cores or using redundant threads degrades perfor-
mance significantly and greatly increases power 
consumption.

Our approach, similar to DVMC, is to check an 
invariant rather than individual components. For a core, 
there are only three invariants that must be maintained: 
the computation (addition, multiplication, etc.), control 
flow, and dataflow must all be correct. There already 
exist cheap computation checkers and control flow 
checkers, but we developed Dynamic Dataflow Verifica-
tion (DDFV) as the first dataflow checker. 

The basic idea behind DDFV is to compute signa-
tures of portions of the dataflow graph of a program and 
then compare then to the signatures that are computed 
dynamically at runtime. If the signatures differ, then 
there was an error in the execution and DDFV will 
detect it. DDFV is powerful because it can detect errors 
in the large portion of the core that is devoted to dynam-
ically reconstructing the dataflow graph at runtime. This 
portion of the core includes: fetch, decode, register 
renaming, register reading, instruction scheduling, and 
data communication between instructions. Once DDFV 
detects an error, it triggers a core recovery using one of 
many pre-existing core checkpoint mechanisms. 

DDFV incurs modest performance degradation due 
to embedding signatures into the program (so that they 
can be compared to the runtime signatures). The perfor-
mance results in Figure 2 show that the overhead, mea-
sured in clock cycles per instruction (CPI), is small 
across a wide range of benchmarks.

We are currently working to combine DDFV with 
existing control flow and computation checkers. This 
combination will provide a very low cost, comprehen-
sive method for detecting all core errors. 

III.  FAULT DIAGNOSIS AND RECONFIGURABILITY

In this section, we discuss our recent contributions in 
the areas of fault diagnosis and reconfiguration around 
hard faults. 

A.  Microprocessor Core Diagnosis and Reconfiguration

Our core diagnosis scheme [3, 4] dynamically 
attributes errors to field deconfigurable units (FDUs) as 
the system is running. Given an error detection mecha-
nism, if an instruction (or micro-op, in the case of IA-
32) is determined to be in error, the system records 
which FDUs that instruction used during its lifetime. If, 
over a period of time, more than a pre-specified thresh-
old of errors has been attributed to a given FDU, it is 
very likely that this resource has a hard fault. 

Our diagnosis scheme does not rely on any specific 
error detection mechanism. For purposes of this paper, 
we assume that we are using DIVA [1], which is a previ-
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Fig. 1. DVMC Traffic Overhead. For each 
benchmark, we plot the per-transaction overhead for 

each of three types of cache coherence protocol 
(Token Coherence, Snooping, and Directory).
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ously developed scheme for detecting errors in cores. 
DIVA detects errors by adding a small checker core to 
each core that is to be checked. It is more expensive, in 
terms of power and hardware, than the scheme we dis-
cussed in Section 2.B, but we have not yet completed 
the development of our scheme. 

The choice of FDU is a design decision for a given 
implementation. In this paper, the identified FDUs for 
which we track diagnosis information are: individual 
entries in the instruction fetch queue (IFQ), individual 
reservation stations (RS), individual entries in the load-
store queue (LSQ), individual entries in the re-order 
buffer (ROB), individual arithmetic logic units (ALU), 
and the individual DIVA checkers. We have chosen a 
fairly fine FDU granularity, but one could choose 
coarser or even finer granularities if so desired. The 
hardware bounds of our diagnosis mechanism are the 
components in which the selected error checker (in our 
design, DIVA) can detect a fault. Therefore, we do not 
consider the register file, because DIVA cannot recover 
from errors in it. 

To track each instruction’s FDU usage, bits are car-
ried with each instruction from the point of FDU usage 
to commit. For those structures that the instruction owns 
at commit, this information is already implicitly avail-
able and no extra wires are needed to carry this resource 
usage info through the pipeline. In our modeled proces-
sor, the ROB entries and DIVA checkers use implicit 
tracking. For the remaining FDUs, the number of bits 
required is a function of the size of the structure and the 
granularity into which we are allowing it to be sub-
divided for later deconfiguration. This represents an 
engineering trade-off in our design that will allow 
implementations to select the appropriate FDU granu-
larity/overhead trade-off. With the configuration used in 
our paper [3], each instruction carries 19 bits of usage 
information: 5 bits for RS, 6 bits for LSQ, 6 bits for 
IFQ, and 2 bits for ALUs. For each FDU we track, the 
processor maintains a small, saturating error counter. 

After an FDU has been diagnosed as having a hard 
fault present, deconfiguring the faulty FDU is desired to 
avoid the frequent pipeline flushes that DIVA would 
trigger due to continued manifestation of the fault. In 
this section, we describe several pre-existing methods 
for deconfiguring typical microprocessor structures, 
plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the 
IFQ, ROB, and LSQ—we have shown how to add a 
level of indirection to allow for de-configuration of a 
single entry with little additional latency added to access 
time for the structure [2]. In our technique [2], each 
structure maintains a fault map. This fault map informa-
tion feeds into the head and tail pointer advancement 

logic, causing the advancement logic to skip an entry 
that is marked as faulty. If cold spares are available, as 
we assume and as shown in Figure 3, the structure size 
can be maintained at the original processor design point. 
If no spares are provisioned, then the structure size must 
be updated when the fault map is updated. 

For some tabular (i.e., directly addressed) struc-
tures—such as reservation stations, register files, etc.—a 
simple solution is to permanently mark the resource as 
in-use, thus removing it from further operation [8]. 

For a functional unit (ALU, etc.), similar to a reser-
vation station, we can mark the resource as permanently 
busy, preventing further instructions from issuing to it 
[8]. Cold sparing of functional units is possible, but it 
may require too much die space, as functional units are 
relatively large compared to individual ROB entries or 
reservation stations. We focus on using existing redun-
dancy, since the cost of adding extra redundancy may be 
too great for commodity microprocessors.

For one of the multiple DIVA checkers, we can map 
it out if we diagnose it as being permanently faulty. 
Depending on how DIVA checkers are scheduled, 
deconfiguration is just as simple as for ALUs; just mark-
ing a faulty checker as permanently busy will deconfig-
ure it. Prior work has not looked into deconfiguring 
DIVA checkers, because no fault diagnosis schemes 
prior to ours could diagnose hard faults in a checker.

B.  Self-Detecting and Reconfiguring Multiplier

In the previous section, we considered ALUs and 
multipliers to be FDUs. This is a fairly coarse granular-
ity, particularly for large structures like multipliers. 
Also, each core is likely to have only one multiplier, so 
deconfiguring it may not be acceptable. Thus, we devel-
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oped a multiplier that can diagnose hard faults within its 
logic and then reconfigure itself to avoid using the faulty 
logic [13]. 

C.  Delay Fault Diagnosis for Functional Units

Most fault diagnosis schemes concern themselves 
with stuck-at faults. This fault model represents many 
underlying physical phenomena and it is commonly 
used by researchers in the areas of fault tolerance and 
fault testing. However, the stuck-at fault model does not 
represent the scenario in which a component is starting 
to wear out. In this case, the value on a wire is not stuck 
at a particular value; rather, the value on the wire is gen-
erated correctly, but more slowly than in the fault-free 
case. The beginning of physical wearout often manifests 
itself as a delay fault, and then complete wearout mani-
fests as a stuck-at fault. 

Our goal is to diagnose delay faults before they lead 
to permanent wearout, because then we can avoid the 
side effects of wearout, such as failure of nearby cir-
cuitry. Our initial work has focused on functional units, 
like ALUs and multipliers. After we detect an error in a 
computation, we want to determine if it is permanent 
and if it is a stuck-at or a delay fault. Simply replaying 
the inputs to the functional unit is sufficient for diagnos-
ing stuck-at faults, but we must replay the most recent 
sequence of inputs to diagnose delay faults. Thus, we 
add a small buffer to remember the most recent input 
pairs, and we replay them after detecting an error. This 
procedure puts the functional unit back in the state 
before it received the inputs that triggered the error. 
Then we replay the error-inducing inputs; if an error 
occurs this time, then we have diagnosed either a stuck-
at or a delay fault. In either case, we have diagnosed a 
faulty component that we want to stop using. 

IV.  CONCLUSIONS

We are addressing NASA’s need for autonomic 
microprocessor execution in the presence of hard faults. 
We have developed novel, low-cost, low-power solu-
tions for detecting errors, diagnosing hard faults, and 
reconfiguring around permanently faulty components. 
This work addresses microprocessor cores, as well as 
multicore processors. We believe that our contributions 
will enable NASA to achieve its desired microprocessor 
reliability without resorting to expensive, power-hungry 
macro-scale redundancy.
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