
Fault Tolerant Microprocessors for Space Missions

Daniel J. Sorin and Sule Ozev

Department of Electrical and Computer Engineering, Duke University

PO Box 90291, Durham, NC 27708

{sorin, sule}@ee.duke.edu
Abstract—This research project is developing micropro-
cessors that can autonomically handle hard (permanent)
faults that occur during space missions. Rather than use
macro-scale redundancy and incur severe power and hard-
ware overheads, we have developed low-cost solutions in
the areas of error detection, fault diagnosis, and reconfigu-
ration around hard faults.

I. INTRODUCTION

NASA relies on microprocessors for its space mis-
sions. Microprocessors control life-support equipment,
navigation, and on-board science experiments. Thus,
microprocessor failure can have catastrophic conse-
quences. NASA has traditionally solved the problem of
hard (permanent) hardware faults by using macro-scale
redundancy, such as triple modular redundancy (TMR).
TMR provides good reliability, but it incurs around
200% overhead in terms of hardware and power con-
sumption. As microprocessors continue to use increas-
ing amounts of power, TMR becomes an unappealing
solution for power-constrained environments, such as
space missions.

Our goal in this work is to create microprocessors
that can tolerate hard faults without adding significant
redundancy. The key observation, made also by previous
research [8, 10, 11], is that modern microprocessors,
particularly simultaneously multithreaded (SMT)
microprocessors [12] and multicore processors, already
contain significant amounts of redundancy for purposes
of enhancing performance. We want to use this redun-
dancy to mask hard faults, at the cost of a graceful deg-
radation in performance for microprocessors with hard
faults. To achieve our goal, the microprocessor must be
able to do three things while it is running.

• It must detect and correct errors caused by faults
(both hard and transient).

• It must diagnose where a hard fault is and deconfig-
ure the faulty component in order to prevent its fault
from being exercised.

Our research group has made contributions in both
of these areas, and we will discuss each in this paper. In

Section II, we discuss low-cost error detection mecha-
nisms that use dynamic verification (online checking of
invariants) to provide comprehensive coverage. In Sec-
tion III, we present our novel diagnosis schemes for
microprocessors and multipliers. We also discuss how
we provide reconfigurability after diagnosis. We con-
clude in Section IV.

II. ERROR DETECTION AND CORRECTION

We have developed two low-cost approaches for
error detection and correction. In Section A, we discuss
dynamic verification of memory consistency, our
approach for detecting all errors in the memory systems
of multithreaded and multicore processors. In Section B,
we discuss dynamic dataflow verification, which is a
low-cost way to detect all microprocessor core errors
that manifest themselves as dataflow errors.

A. Dynamic Verification of Memory Consistency

The memory system of a modern computer system is
a complicated collection of interacting components. For
a multicore processor (e.g., Intel CoreDuo) or a multi-
chip multiprocessor, the memory system includes
DRAM memories, SRAM caches, an interconnection
network over which the cores can communicate, and
cache and memory controllers that implement a coher-
ence protocol for sharing data among the cores. We can
add error detection mechanisms to each component
(e.g., parity bits on messages that traverse the intercon-
nection network), but it is difficult and costly to com-
pose a large number of component error checkers such
that they detect all errors, especially errors that involve
interactions between components.

To address this problem, we have developed a
scheme called Dynamic Verification of Memory Consis-
tency (DVMC). The key idea behind DVMC is to check
invariants rather than components. All memory systems
must implement a software-visible interface known as a
memory consistency model [adve:tutorial:ieeecom-
puter:1996]. The consistency model is an invariant that
an error-free memory system is guaranteed to enforce,
and different architectures can specify different consis-
1

tency models (e.g., the model for Intel IA-32 processors
differs from the model for PowerPC processors). Thus,
by dynamically verifying (i.e., checking at runtime) that
the hardware is implementing its memory consistency
model, DVMC can comprehensively detect all possible
errors in the memory system. Any error in the memory
system must manifest itself as a violation of the consis-
tency model and will thus be detected by DVMC.

We have developed several implementations of
DVMC [5, 6, 7]. We now have an implementation [7]
that incurs minimal performance degradation and adds
only about 1-8% extra traffic on the interconnection net-
work, as shown in Figure 1 for five benchmarks. This
overhead is mostly a function of the specific cache
coherence protocol. The details of this experiment are
explained in our prior paper [7].

When DVMC detects an error, it restores the state of
the system to a pre-error checkpoint using the SafetyNet
backward error recovery mechanism [9].

B. Dynamic Dataflow Verification

There already exist solutions for detecting errors
within a processor core, but they are expensive. Repli-
cating cores or using redundant threads degrades perfor-
mance significantly and greatly increases power
consumption.

Our approach, similar to DVMC, is to check an
invariant rather than individual components. For a core,
there are only three invariants that must be maintained:
the computation (addition, multiplication, etc.), control
flow, and dataflow must all be correct. There already
exist cheap computation checkers and control flow
checkers, but we developed Dynamic Dataflow Verifica-
tion (DDFV) as the first dataflow checker.

The basic idea behind DDFV is to compute signa-
tures of portions of the dataflow graph of a program and
then compare then to the signatures that are computed
dynamically at runtime. If the signatures differ, then
there was an error in the execution and DDFV will
detect it. DDFV is powerful because it can detect errors
in the large portion of the core that is devoted to dynam-
ically reconstructing the dataflow graph at runtime. This
portion of the core includes: fetch, decode, register
renaming, register reading, instruction scheduling, and
data communication between instructions. Once DDFV
detects an error, it triggers a core recovery using one of
many pre-existing core checkpoint mechanisms.

DDFV incurs modest performance degradation due
to embedding signatures into the program (so that they
can be compared to the runtime signatures). The perfor-
mance results in Figure 2 show that the overhead, mea-
sured in clock cycles per instruction (CPI), is small
across a wide range of benchmarks.

We are currently working to combine DDFV with
existing control flow and computation checkers. This
combination will provide a very low cost, comprehen-
sive method for detecting all core errors.

III. FAULT DIAGNOSIS AND RECONFIGURABILITY

In this section, we discuss our recent contributions in
the areas of fault diagnosis and reconfiguration around
hard faults.

A. Microprocessor Core Diagnosis and Reconfiguration

Our core diagnosis scheme [3, 4] dynamically
attributes errors to field deconfigurable units (FDUs) as
the system is running. Given an error detection mecha-
nism, if an instruction (or micro-op, in the case of IA-
32) is determined to be in error, the system records
which FDUs that instruction used during its lifetime. If,
over a period of time, more than a pre-specified thresh-
old of errors has been attributed to a given FDU, it is
very likely that this resource has a hard fault.

Our diagnosis scheme does not rely on any specific
error detection mechanism. For purposes of this paper,
we assume that we are using DIVA [1], which is a previ-

0.00

0.02

0.04

0.06

Pe
r-

T
ra

ns
ac

tio
n

O
ve

rh
ea

d
co

m
pa

re
d

to
 U

np
ro

te
ct

ed

Tok
en

+TCC

Sno
op

+TCC

Dir+
TCC

apache
Tok

en
+TCC

Sno
op

+TCC

Dir+
TCC

oltp
Tok

en
+TCC

Sno
op

+TCC

Dir+
TCC

jbb
Tok

en
+TCC

Sno
op

+TCC

Dir+
TCC

slash
Tok

en
+TCC

Sno
op

+TCC

Dir+
TCC

barnes

Fig. 1. DVMC Traffic Overhead. For each
benchmark, we plot the per-transaction overhead for

each of three types of cache coherence protocol
(Token Coherence, Snooping, and Directory).

0.8

1.0

1.2

N
or

m
al

iz
ed

 C
P

I

applu

apsi

art-110

art-470

bzip2-graphic

bzip2-program

crafty

eon-rushm
eier

equake

facerec

gcc-166

gcc-200

gcc-expr

gcc-integrate

gzip-graphic

lucas

m
esa

m
grid

parser

perlbm
k-m

akerand

sixtrack

sw
im

tw
olf

vortex2

vpr-route

geom
etric m

ean

Fig. 2. DDFV Performance Overhead
2

ously developed scheme for detecting errors in cores.
DIVA detects errors by adding a small checker core to
each core that is to be checked. It is more expensive, in
terms of power and hardware, than the scheme we dis-
cussed in Section 2.B, but we have not yet completed
the development of our scheme.

The choice of FDU is a design decision for a given
implementation. In this paper, the identified FDUs for
which we track diagnosis information are: individual
entries in the instruction fetch queue (IFQ), individual
reservation stations (RS), individual entries in the load-
store queue (LSQ), individual entries in the re-order
buffer (ROB), individual arithmetic logic units (ALU),
and the individual DIVA checkers. We have chosen a
fairly fine FDU granularity, but one could choose
coarser or even finer granularities if so desired. The
hardware bounds of our diagnosis mechanism are the
components in which the selected error checker (in our
design, DIVA) can detect a fault. Therefore, we do not
consider the register file, because DIVA cannot recover
from errors in it.

To track each instruction’s FDU usage, bits are car-
ried with each instruction from the point of FDU usage
to commit. For those structures that the instruction owns
at commit, this information is already implicitly avail-
able and no extra wires are needed to carry this resource
usage info through the pipeline. In our modeled proces-
sor, the ROB entries and DIVA checkers use implicit
tracking. For the remaining FDUs, the number of bits
required is a function of the size of the structure and the
granularity into which we are allowing it to be sub-
divided for later deconfiguration. This represents an
engineering trade-off in our design that will allow
implementations to select the appropriate FDU granu-
larity/overhead trade-off. With the configuration used in
our paper [3], each instruction carries 19 bits of usage
information: 5 bits for RS, 6 bits for LSQ, 6 bits for
IFQ, and 2 bits for ALUs. For each FDU we track, the
processor maintains a small, saturating error counter.

After an FDU has been diagnosed as having a hard
fault present, deconfiguring the faulty FDU is desired to
avoid the frequent pipeline flushes that DIVA would
trigger due to continued manifestation of the fault. In
this section, we describe several pre-existing methods
for deconfiguring typical microprocessor structures,
plus a new way to deconfigure a faulty DIVA checker.

For circular access array structures—such as the
IFQ, ROB, and LSQ—we have shown how to add a
level of indirection to allow for de-configuration of a
single entry with little additional latency added to access
time for the structure [2]. In our technique [2], each
structure maintains a fault map. This fault map informa-
tion feeds into the head and tail pointer advancement

logic, causing the advancement logic to skip an entry
that is marked as faulty. If cold spares are available, as
we assume and as shown in Figure 3, the structure size
can be maintained at the original processor design point.
If no spares are provisioned, then the structure size must
be updated when the fault map is updated.

For some tabular (i.e., directly addressed) struc-
tures—such as reservation stations, register files, etc.—a
simple solution is to permanently mark the resource as
in-use, thus removing it from further operation [8].

For a functional unit (ALU, etc.), similar to a reser-
vation station, we can mark the resource as permanently
busy, preventing further instructions from issuing to it
[8]. Cold sparing of functional units is possible, but it
may require too much die space, as functional units are
relatively large compared to individual ROB entries or
reservation stations. We focus on using existing redun-
dancy, since the cost of adding extra redundancy may be
too great for commodity microprocessors.

For one of the multiple DIVA checkers, we can map
it out if we diagnose it as being permanently faulty.
Depending on how DIVA checkers are scheduled,
deconfiguration is just as simple as for ALUs; just mark-
ing a faulty checker as permanently busy will deconfig-
ure it. Prior work has not looked into deconfiguring
DIVA checkers, because no fault diagnosis schemes
prior to ours could diagnose hard faults in a checker.

B. Self-Detecting and Reconfiguring Multiplier

In the previous section, we considered ALUs and
multipliers to be FDUs. This is a fairly coarse granular-
ity, particularly for large structures like multipliers.
Also, each core is likely to have only one multiplier, so
deconfiguring it may not be acceptable. Thus, we devel-

2nd faulty row

1st faulty row

spare

spare

begin_buffer

end_buffer
pointer

advance
logic

pointer
advance

logic

0 0 0 1 0 1 0
General
Purpose
spares

fault information buffer size

buffer size
advancement

fault map

Fig. 3. Deconfiguration of entries in a circular
buffer (e.g., reorder buffer). Shading indicates

hardware added for entry deconfiguration purposes.
3

oped a multiplier that can diagnose hard faults within its
logic and then reconfigure itself to avoid using the faulty
logic [13].

C. Delay Fault Diagnosis for Functional Units

Most fault diagnosis schemes concern themselves
with stuck-at faults. This fault model represents many
underlying physical phenomena and it is commonly
used by researchers in the areas of fault tolerance and
fault testing. However, the stuck-at fault model does not
represent the scenario in which a component is starting
to wear out. In this case, the value on a wire is not stuck
at a particular value; rather, the value on the wire is gen-
erated correctly, but more slowly than in the fault-free
case. The beginning of physical wearout often manifests
itself as a delay fault, and then complete wearout mani-
fests as a stuck-at fault.

Our goal is to diagnose delay faults before they lead
to permanent wearout, because then we can avoid the
side effects of wearout, such as failure of nearby cir-
cuitry. Our initial work has focused on functional units,
like ALUs and multipliers. After we detect an error in a
computation, we want to determine if it is permanent
and if it is a stuck-at or a delay fault. Simply replaying
the inputs to the functional unit is sufficient for diagnos-
ing stuck-at faults, but we must replay the most recent
sequence of inputs to diagnose delay faults. Thus, we
add a small buffer to remember the most recent input
pairs, and we replay them after detecting an error. This
procedure puts the functional unit back in the state
before it received the inputs that triggered the error.
Then we replay the error-inducing inputs; if an error
occurs this time, then we have diagnosed either a stuck-
at or a delay fault. In either case, we have diagnosed a
faulty component that we want to stop using.

IV. CONCLUSIONS

We are addressing NASA’s need for autonomic
microprocessor execution in the presence of hard faults.
We have developed novel, low-cost, low-power solu-
tions for detecting errors, diagnosing hard faults, and
reconfiguring around permanently faulty components.
This work addresses microprocessor cores, as well as
multicore processors. We believe that our contributions
will enable NASA to achieve its desired microprocessor
reliability without resorting to expensive, power-hungry
macro-scale redundancy.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Aeronautics and Space Administration under
Grant NNG04GQ06G, the National Science Foundation
under grants CCR-0309164 and CCF-0444516, a Duke

Warren Faculty Scholarship (Sorin), and an equipment
donation from Intel Corporation.

REFERENCES

[1] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 196–207, Nov. 1999.

[2] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating
Hard Faults in Microprocessor Array Structures. In Proceedings
of the International Conference on Dependable Systems and
Networks, pages 51–60, June 2004.

[3] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for Online
Diagnosis of Hard Faults in Microprocessors. In Proceedings of
the 38th Annual IEEE/ACM International Symposium on
Microarchitecture, Nov. 2005.

[4] F. A. Bower, D. J. Sorin, and S. Ozev. Online Diagnosis of Hard
Faults in Microprocessors. ACM Transactions on Architecture
and Code Optimization, To Appear 2007.

[5] A. Meixner and D. J. Sorin. Dynamic Verification of Sequential
Consistency. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 482–493, June
2005.

[6] A. Meixner and D. J. Sorin. Dynamic Verification of Memory
Consistency in Cache-Coherent Multithreaded Computer
Architectures. In Proceedings of the International Conference on
Dependable Systems and Networks, June 2006.

[7] A. Meixner and D. J. Sorin. Error Detection via Online Checking
of Cache Coherence with Token Coherence Signatures. In
Proceedings of the Twelfth International Symposium on High-
Performance Computer Architecture, pages 145–156, Feb. 2007.

[8] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger.
Exploiting Microarchitectural Redundancy For Defect
Tolerance. In Proceedings of the 21st International Conference
on Computer Design, Oct. 2003.

[9] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 123–134, May 2002.

[10] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Case for
Lifetime Reliability-Aware Microprocessors. In Proceedings of
the 31st Annual International Symposium on Computer
Architecture, June 2004.

[11] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting
Structural Duplication for Lifetime Reliability Enhancement. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture, June 2005.

[12] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 191–202, May 1996.

[13] M. Yilmaz, D. R. Hower, S. Ozev, and D. J. Sorin. Self-
Detecting and Self-Diagnosing 32-bit Microprocessor
Multiplier. In International Test Conference, Oct. 2006.
4

	I. Introduction
	II. Error Detection and Correction
	A. Dynamic Verification of Memory Consistency
	Fig. 1. DVMC Traffic Overhead. For each benchmark, we plot the per-transaction overhead for each of three types of cache coherence protocol (Token Coherence, Snooping, and Directory).

	B. Dynamic Dataflow Verification
	Fig. 2. DDFV Performance Overhead

	III. Fault Diagnosis and Reconfigurability
	A. Microprocessor Core Diagnosis and Reconfiguration
	Fig. 3. Deconfiguration of entries in a circular buffer (e.g., reorder buffer). Shading indicates hardware added for entry deconfiguration purposes.
	Fig. 4. Deconfiguration of entries in a tabular structure (e.g., reservation station). Shading indicates hardware added for entry deconfiguration purposes.

	B. Self-Detecting and Reconfiguring Multiplier
	C. Delay Fault Diagnosis for Functional Units

	IV. Conclusions
	Acknowledgment
	References
	Fault Tolerant Microprocessors for Space Missions
	Daniel J. Sorin and Sule Ozev
	Department of Electrical and Computer Engineering, Duke University PO Box 90291, Durham, NC 27708 {sorin, sule}@ee.duke.edu

