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Abstract - We have developed software that enables 
biologists to specify, evaluate, refine and share 
biological models and hypotheses. Using this 
software, astrobiologists, earth and biomedical 
scientists can bring data and background knowledge 
to bear in evaluating the consistency and correctness 
of their models of biological and ecological processes, 
and in refining them whenever the models are 
incomplete or do not agree with data. Our core 
technologies include a graphical user interface that 
enables scientists to express and analyze models, tools 
for extracting constraints on models from 
experiments, databases and background knowledge, 
and computational methods for the evaluation and 
refinement of models, subject to these constraints. 
The software also includes capabilities that foster 
scientific collaborations between researchers in 
different subfields and geographical locations. Our 
system has been applied to problems aimed at 
discovering the molecular, genetic, and biochemical 
mechanisms involved in controlling evolution, 
metabolic diversity, and the ability of life to survive 
in space. 

 
I. INTRODUCTION 
 

Recent revolutionary advances in molecular, 
cellular and systems biology open remarkable new 
opportunities not only for medicine, pharmacology 
and biotechnology, but also for NASA-related 
research. Biological techniques that were not 

available only a few years ago can now be used to 
gain new insights into the evolution of simple forms 
of life, its interactions with the biosphere under 
different conditions, and its capability to survive in 
different environments on Earth and in space. These 
techniques involve high-throughput genome 
sequencing and measurements of levels of mRNA, 
proteins and metabolites in cells. All these methods 
are data-rich but relatively knowledge-poor – they 
provide large amounts of data, but usually require 
sophisticated analysis and interpretation to yield 
answers to questions asked by biologists. Examples 
of such questions are: How is the evolution of a 
genome reflected in metabolism and phenotype? 
How do members of a microbial community 
interact and respond to environmental change? 
Which genomic and metabolic characteristics 
determine the capability of microorganisms to 
survive long-term and possibly interplanetary space 
travel? These questions can be fully answered only 
by building data based, causal models that link 
environmental conditions to gene expression and, 
ultimately, to cell behavior modulated by gene 
regulation.  

Currently, the majority of bioinformatics tools deals 
only with one type of data (e.g. gene sequences or 
gene expression measurements) and do not utilize 
other sources of information. Even though 
thousands of measurements from high-throughput 



experiments are often available, they all come from 
only a few biologically independent samples, 
forcing biologists to reason from statistically sparse 
data that usually have low signal/noise ratio. These 
limitations are particularly relevant to astrobiology 
because collecting many independent samples in 
field and space experiments might be expensive, 
technically difficult and, in some cases, impossible. 
This means that models of cellular or ecological 
processes entirely based on a single experiment or a 
small number of experiments, no matter how well 
designed, are unlikely to be sufficiently accurate to 
have high explanatory and predictive power. 
Including many sources of information can greatly 
improve the reliability of computational models. 
Also, the availability of easy to use computational 
tools for complex database searches and knowledge 
manipulation eliminates the need for computer 
programmers to mediate between biologists and 
their data. This, in turn, increases productivity of 
experimentalists involved in building and testing 
biological models. 
To meet the bioinformatics needs of NASA, we 
have been developing computational tools that 
enable biologists to specify, evaluate, refine and 
share biological models and hypotheses. 
Astrobiologists, earth and biomedical scientists can 
bring data and background knowledge to bear to 
evaluate the consistency and correctness of their 
models of biological and ecological processes, and 
to aid in refining them whenever the models are 
incomplete or do not agree with data. Our core 
technologies include a graphical user interface that 
enables scientists to express and analyze models, 
tools for extracting constraints on models from 
experiments, databases and background knowledge, 
and computational methods for the evaluation and 
refinement of models subject to these constraints. 
These methods operate on genomic, proteomic, and 
metabolic data, higher-level knowledge and 
representations of metabolic and regulatory 
networks. In addition, our software includes 
capabilities that foster scientific collaborations by 
allowing researchers in different subfields and 
geographical locations to share their knowledge and 
discoveries, and work together towards achieving 
common scientific goals. 

 
The reminder of the paper consists of four sections. 
In the next section we provide a brief background 
for non-biologists on the processes that need to be 
modeled or yield background knowledge. This is 
followed by an overview of our knowledge 
discovery system and a brief description of its main 
component. In Section IV we compare our approach 
to other, related work. Further, we illustrate in a few 
examples how important research areas in 
astrobiology, can benefit from using our system. 
We close with conclusions and a brief outline of the 
extension of our system that we plan to implement. 
 

II. BIOLOGICAL BACKGROUND 
 
Genetic information about a cell is encoded in DNA 
forming the genome. At present, sequencing 
complete genomes of microorganisms is routine. 
Once the sequence is available, individual genes are 
identified and proteins coded by these genes are 
assigned putative general functions. Usingn this 
computational procedure, called gene annotation, 
approximately 70% of all genes in the genome can 
be identified.  
 
More recently, applications of genomic sequencing 
have been extended to microbial ecology as a 
strategy for assessing the genetic and functional 
diversity of uncultured organisms sharing the same 
environment [1]. In this case, what is being 
sequenced is a metagenome - the collective 
genomes of the microorganisms recovered from a 
sample in a given environment. The goal is to 
identify the members of a microbial community and 
to understand how they interact with each other. 
This is of great interest to astrobiology in relation to 
understanding the historical record of how 
microorganisms shaped the planetary environment 
and how microbial communities can survive in 
space. 
 
The genomic sequence is only the starting point for 
understanding cell behavior in response to signals 
(perturbations) that might be physical (light, 
temperature, radiation, gravity) or chemical (levels 
of chemicals supplied from the environment or 
produced inside the cell). Cellular responses are 



precisely regulated: through signal transduction 
pathways, these perturbations affect the levels of 
regulatory proteins, which activate the production 
of RNA transcribed by specific genes. Most RNA 
produced during transcription is translated into 
proteins, and the level of each protein so generated 
is considered proportional to the amount of its RNA 
transcript. The combined processes of translation 
and transcription are called gene expression. A large 
fraction of the proteins produced in this process 
catalyze chemical reactions, mediate transport or 
regulate future expression of different genes, often 
forming a complex feedback network. This network 
of cellular reactions supporting life, called a 
metabolic network, defines a cell’s ability to self-
maintain, grow, utilize nutrients and secrete 
products. Taken together it describes much of cell 
behavior. The complete metabolic network is never 
active at once; environmental signals (e.g. light or 
supply of different nutrients) influence, largely via 
regulatory proteins, which parts of the metabolic 
network are active under particular conditions. 
From this knowledge it is possible to calculate the 
fluxes of metabolites, and in particular the rates of 
production of compounds that are released to 
biosphere (e.g. oxygen) or used as nutrients by other 
microorganisms (e.g. in microbial mats).  
 
For microorganisms, large parts of metabolic 
networks are inferred from the annotated genome 
exploiting similarities in metabolic pathways 
between related organisms. Gene regulatory logic, 
which governs the activity of the metabolic 
network, is in general not known even for simple 
organisms and needs to be reconstructed from the 
data and background knowledge. The primary 
sources of data for these tasks are high-throughput 
measurements of gene expression in a cell, defined 
by the levels of its RNA transcripts. This is done 
using DNA microarray technology or other, similar 
biological techniques. Microarray data, however, 
are inherently noisy, reflecting imperfections in the 
experimental technique, the natural heterogeneity of 
biological samples and the stochastic character of 
cellular processes. Thus, reliable predictions based 
entirely on these experiments are difficult, 
especially because the relations between the levels 
of RNA transcripts and active proteins are not 

always as simple as postulated. A more direct 
approach is to measure the levels of proteins in a 
cell  (proteomics)  [2,3]. In this approach, however, 
there are still unresolved issues with rapid 
identification of a large number of proteins. The 
rates of production of metabolites can also be 
measured using the recently developed techniques 
of metabolomics [4]. However, large-scale 
identification of metabolites still remains a major 
challenge. 
 
High-throughput studies can be augmented by other 
experiments. For example, genetic engineering can 
be used to investigate how cellular behavior is 
affected after removing, adding or replacing 
specific genes in the genome. When successful, 
these experiments are highly informative, but many 
of them yield modifications that are either lethal or 
silent. 
 

III. MODEL DISCOVERY SYSTEM 
 
A. Overview 
The brief biological background illustrates the 
conceptual foundations of our system – a variety of 
experimental techniques provide information 
relevant to understanding complex biological 
processes. Each technique has its strengths and 
weaknesses but none is sufficient to describe the 
process completely. To do so, one needs to combine 
results from different experiments, and analyze 
them using appropriate computational tools.  
 
The general problem to be solved can be stated as 
follows: given (1) experimental data collected by 
the researcher, such as gene sequences, gene 
expression or protein levels under different 
conditions, (2) relevant background information, 
and (3) a hypothesis or a model, evaluate support 
for this model or hypothesis and, if required, modify 
it to obtain a better agreement with the data and 
background knowledge. A hypothesis is understood 
to be a statement about a trait of the organism that 
can be directly linked to its genomic or metabolic 
characteristics. For example, the biologist might 
hypothesize that under specific but different 
conditions a given organism can grow either 
aerobically or anerobically or use different 



nutrients. In this context, a model refers to a 
complete, partial or approximate description of 
regulatory logic and metabolic fluxes in a cell under 
given conditions, and can be considered as a special 
case of a hypothesis.  
 
As shown in Fig. 1, the model discovery process 
consists of four phases. In the Hypothesis 
Formulation Phase (I), a hypothesis is expressed in 
formal language using an intuitive, biologist-
friendly interface.  If the hypothesis cannot be 
summarily refuted or confirmed using the results of 
past analyses, the Constraint Formation Phase (II) is 
carried out. In this phase, direct experimental data, 

ancillary data, and background knowledge that 
originally take many different forms are converted 
into a set of uniformly represented constraints, each 
of which is assigned a range of certainty. This is 
followed by the Evaluation Phase (III), in which the 
hypothesis is evaluated according to its agreement 
with data and constraints. During this process, 
variations of the original hypothesis that fit data and 
constraints better may be discovered. Next, in the 
Visualization Phase (IV), the hypothesis, its 
variants, and the appropriate supporting and 
contradictory evidence are presented to the user in 
an easy to understand summary.  

 
 

Fig. 1. The four phases of hypotheses design and validation. 
 

B. Hypothesis Formulation Phase (I) 
To effectively aid biologists in their work, we 
must first speak their language. The fundamental 
unit of biological reasoning is the formal 
hypothesis. Thus, we must develop an interface 
for expressing hypotheses using conventions 
familiar to, and comfortable for, biologists. This 
means that the interface must accept hypotheses 
expressed either as reaction pathway diagrams, 
textual descriptions, or a combination of both. To 
support hypothesis evaluation, it is helpful to have 
a web-enabled interface that guides users in 
building syntactically correct and semantically 
accurate hypotheses. This will be done through 
HyBrow system that we have just developed. 

 
The HyBrow prototype (www.hybrow.org) allows 
users to compose sentences by specifying entities 
and the relationships between them from a 
structured hypothesis ontology. A researcher can 
also sketch a diagram representing interactions 
and spatial relationships among cellular 
components using a separate graphical interface. 
We will leverage this work to create a web-based 
platform specifically designed to handle the 
hypotheses of astrobiologists. A demo screenshot 
showing parallel editing of both graphical and 
textual representations of a hypothesis about the 
regulation of metabolism in the presence of 
alternate energy sources appears in Fig. 2.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graphical user interface in HyBrow allows users to compose their 
hypotheses graphically or as a structured text.

 
 
C. Constraint Formation Phase (II) 
Model constraints provide the basis for establishing 
evidence for partial orderings over models and 
hypotheses based on support that they received 
from current data and previous information. The 
user can supply constraints explicitly, but usually 
they are extracted from experimental data obtained 
by the biologist, literature and databases or 
knowledge bases using a suite of specialized 
computational tools.  
 
Constraints arising from high-throughput data, such 
as gene expression, gene sequencing and large-scale 
homology comparisons are determined from 
analyses that utilize bioinformatics tools available 
through web-based interfaces. Constraints from 
auxiliary knowledge are harder to extract because 
they cover many types of knowledge, with myriad 
sources of uncertainty. Therefore, an efficient 
procedure for obtaining constraints and managing 
their uncertainties has to be based on an interactive  
 

 
 
environment, in which the knowledge and data are 
integrated, and the suite of computational tools 
necessary for their analysis is already in hand. For 
this purpose, we developed BioBike, a biology-
based programming environment and a biological 
data repository [5]. BioBike provides integrated 
access to a number of data sources, including the 
Gene Ontology, the Kegg knowledge base, the 
BioCyc database for metabolic pathways, biological 
literature, as well as basic bioinformatics tools. 
BioBike embeds the biological knowledge and data 
in a frame-based, web-accessible programmable 
knowledge environment. This formalism allows for 
formulating and executing complicated queries to 
data and knowledge bases in a simple, natural way 
instead of carrying out painstaking searches that 
usually require programmer’s assistance (for 
examples see [5]. For BioBike server see 
http://nostoc.stanford.edu. 
 
The significance of constraints from background 
knowledge can be illustrated in an example from 



our work [6]. To test a hypothesis about the 
existence of a direct causal link between two genes 
in a signaling pathway involved in cancer and 
apoptosis, biologists performed gene expression 
measurements. Our subsequent analysis revealed 
that several models of the signaling pathway that  
both involved and did not involve the link of 
interest described the results equally well. However,  
once results of previous, relevant experiments were 
taken into account, the hypothesis could be rejected 
with high confidence on the basis of the estimated 
Bayesian equivalent of the p-value, well known in 
classical statistics. This was because models that 
involved the direct link were inconsistent either 
with gene expression data or with background 
knowledge. 
 
D. Evaluation Phase (III) 
To evaluate biological hypotheses or models we 
currently use a deduction-based approach to 
biocomputation that semi-automatically combines 
knowledge, software, and data to satisfy biologists’ 
goals expressed in a high-level logical language. 
The approach is implemented in a system called 
BioDeducta, which combines SNARK theorem 
prover with the BioBike integrated knowledge base 
and biocomputing platform [7]. The user expresses 
a high-level conjecture, representing a 
biocomputational goal query, without indicating 
how this goal is to be achieved. A subject domain 
theory, represented in SNARK’s logical language, 
expresses the meaning of the terms in the conjecture 
in terms of the capabilities of the available 
resources and of the background knowledge 
necessary to link them together. If the subject 
domain theory enables SNARK to prove the 
conjecture—that is, to find paths between the goal 
and BioBike resources—then the resulting proofs 
record various solutions to the conjecture/query. 
The proofs also provide specific provenance for 
each result, indicating in detail how they were 
computed. 
 

IV. RELATION TO OTHER WORK 
 

Although different aspects of an interactive 
approach to discovering biological models, in which 
constraints derived from multiple sources of 

information are incorporated, have been examined 
previously, no existing framework allows for taking 
advantage of all of them simultaneously. Below we 
briefly review previous, representative efforts. 
 
Methods for discovering causal models generally 
fall into two broad categories: score based and 
constraint based. In score based methods, one tries 
to infer models that best reproduce the observed 
data according to a score function such as posterior 
probability, likelihood, or mean squared error. For 
example, Friedman [8,9] and Hartemink et al. [10] 
attempted to learn Bayesian network models of 
gene regulation by focusing on models with the 
highest posterior probability given the observed 
data. Other researchers have proposed finding a 
system of linear differential or difference equations 
that best fit the observed data [11-17].  The main 
drawback of score-based approaches is that they can 
be highly over-parameterized as the models 
typically have many more parameters than the 
number of data samples from a biological 
experiment. A linear system of equations will 
typically have O(N2) parameters, where N is the 
number of variables, whereas the number of 
independent samples in gene expression studies is 
usually much smaller than N. Empirical studies 
show that when the number of samples is small, 
these methods usually do little or no better than 
random guessing [15,18]. 
 
Constraint-based methods seek models that are 
consistent with a set of constraints derived from the 
observed data. For example, Saavedra et al. [19] 
applied the Tetrad framework [20], which is based 
on matching conditional independence relations 
observed in the expression data to those entailed by 
the model. In our previous work [21], we used 
conditional independence relationship implied by a 
linear model to revise an existing model of gene 
regulation in response to new observational data.  In 
GenePath, Zupan et al. [22] have attempted to 
develop causal models that are consistent with 
constraints derived from a set of interventions. 
Specifically, they use information on effects of 
deleting one or two genes from the genome to 
determine causal structure.  Although this is a 



powerful approach, it relies on the availability of 
deleting data. 
 
Recently, researchers have begun to recognize the 
need for incorporating multiple sources of 
information to increase statistical power of their 
methods. For example, Holmes & Bruno [23] and 
Segal et al. [24] proposed to model both expression 
data and the nucleotide sequences of promoter 
regions. They developed a generative probabilistic 
model that explains both data sources as a function 
of an unobserved cluster variable. The main 
difficulty of this approach is to create a realistic 
probabilistic model capable of explaining all of the 
data types that one wishes to incorporate. Thus, 
adding a new type of data requires developing a 
new probabilistic model.  

 
V. SELECTED APPLICATIONS 

 
A. Spaceflight-induced Gene Expression Changes in 
Mice 
In order to understand genomically induced 
physiological changes in higher organisms in 
response to space flight, we analyzed results from 
the first gene expression experiment on space-flown 
mice. By combining gene expression data for liver 
and kidney tissue with earlier physiological data on 
other space-flown organisms and ground-based 
information on mice, we found support for the 
hypothesis that pharmacokinetics in space is altered 
due to perturbed excretion of drugs rather than 
changes in their metabolism. We also found support 
for the hypotheses that stress response to space 
flight is increased, but immune response is reduced. 
In contrast, we found no support for a popular but 
unproven hypothesis that there is a universal set of 
gravity-activated genes. In general, our results 
demonstrate that, similar to bone, muscle, and 
immune function, alterations in liver parallel those 
seen in other mammals. This indicates that the 
mouse adequately models the spaceflight-induced 
physiological changes that are of concern in space 
medicine. 
 
B. Light Adaptation of Cyanobacteria 
A problem of considerable interest to biologists is 
how organisms adapt to their environmental niches. 

Following the work of Bahya et al. [25], who 
studied the genomic differences among the many 
strains of the cyanobacteria to understand their 
adaptation to niches of differing levels of light and 
nutrients, we addressed the same issue using 
BioDeducta. Among the cyanobacterium subspecies 
procholorococcus, one strain, ProMed4, is adapted 
to high light, living in the upper part of the ocean, 
whereas another strain, Pro9313, is adapted to lower 
light, living in somewhat deeper waters. Bhaya et 
al. were interested in identifying proteins (and genes 
that code for them) that are involved in this 
adaptation.  One way to address this biological 
question is to ask which proteins in ProMed4 have 
no ortholog—that is, no gene of similar apparent 
function (based upon sequence similarity)—in 
Pro9313. One can get an even finer bead on this 
question by examining microarray expression 
results for the genes that produce those proteins, 
asking which of those genes unique to ProMed4 
demonstrate a significant light response, and 
therefore might be called the high light adaptive 
genes. Unfortunately, microarrays for the 
prochlorococci have only recently been developed, 
so no such experimental work exists. However, 
there are a number of studies on the related 
freshwater cyanobacterium, synechocystis s6803. 
Indeed, research specific to light acclimation has 
been conducted in s6803 [26]. Going one step 
farther, one may focus specifically on the genes that 
are annotated as photosynthesis-related according to 
some formalization of gene function, such as the 
Gene Ontology. Armed with an appropriate subject 
domain theory, BioDeducta was able to solve the 
problem of identifying high light adaptive genes 
rapidly, and the solution agreed with that published 
Bahya et al. after extensive efforts. 
 
C. Metabolic Diversity of Aquificales 
To understand metabolic diversity of closely related 
organisms living in different environmental 
conditions, Awe carried out comparative analysis of 
four recently sequenced strains of microorganisms, 
called Aquificales. To determine similarities and 
differences in metabolisms of these organisms, we 
used the capabilities of BioBike to combine 
genomic sequences with Gene Ontology, metabolic 
pathway databases and prior knowledge about 



several, related organisms. We discovered that, 
contrary to the expectation that Aquificales are 
strictly chemolithoautotrophic, some strains could 
grow heterotrophically and fix nitrogen. Since 
Aquificales are deeply rooted in the tree of life, 
understanding their metabolic capabilities provides 
important leads to how life evolved and adapted. 
 

VI. CONCLUSIONS AND OUTLOOK 
 
To advance a majority of NASA’s biology related 
goals, such as reconstruction of the history of life on 
Earth and its interactions with the environment, 
understanding how life adapts to conditions in space 
and using living organisms for in situ resource 
utilization, it is required to combine genomic and 
physiological studies with sophisticated modeling 
of biological and ecological processes. We have 
developed computational tools for such modeling 
that can take advantage of many different data 
sources, and by doing so increase their predictive 
and explanatory power. We also demonstrated the 
utility of our system in several problems of interest 
to NASA. 
 
Currently, we work on significant extensions of our 
system. One promising direction is to increase the 
capabilities of evaluating the reliability of models, 
presently handled by BioDeducta, by incorporating 
complete metabolic and regulatory models using 
flux balance analysis and Mixed Integer/Linear 
Programming techniques. Searching the space of 
models will be handled using novel Monte Carlo 
techniques. We also work on considerable 
extensions of the HyBrow system, content 
unification and consistency of databases, and 
greatly improved collaboration and visualization 
tools. We expect that, once these extensions are 
completed, the system will be unique in its 
expressiveness and evaluation power, and will 
become a standard tool for researchers involved in 
NASA-sponsored biological research. 
 

ACKNOWLEDGMENT 
 
The authors thank the NASA Advanced Information 
Science Research Program for supporting this work. 
 

REFERENCES 
 
[1] Rusch D.B. et al. (2007) The Sorcerer II Global   
Ocean Sampling Expedition: Northwest Atlantic 
through Eastern Tropical Pacific. PLoS Biol 5(3): 
e77. 
 
[2] Lipton, M.S. et al. (2002). Global analysis of the 
Deinococcus radiodurans proteome by using 
accurate mass tags, Proc. Natl. Acad. Sci. U.S.A., 
99, 11049-11054. 
 
[3] Ram, R.J. et al. (2005). Community Proteomics 
of a Natural Microbial Biofilm, Science, 308, 1915-
1920. 

 
[4] Phelps, T.J., Palumbo, A.V. and Beliaev, A.S. 
(2002). Metabolomics and microarrays for 
improved understanding of phenotypic 
characteristics controlled by both genomics and 
environmental constraints. Curr. Opinion  
Biotechnol., 13, 20-24. 
 
[5] Massar, J.P., Travers, M., Elhai. J. and Shrager, 
J. (2005). BioLingua: a programmable knowledge 
environment for biologists. Bioinformatics, 21, 199-
207. 
 
[6] Chrisman, L, Langley, P., Bay, S. and Pohorille, 
A. (2003). Incorporating biological knowledge into 
evaluation of causal regulatory hypotheses. 
Proceedings of the Pacific Symposium on 
Biocomputing, 128-139.  
 
[7] Shrager J, Waldinger R, Stickel M, Massar J 
(2007) Deductive Biocomputing. PLoS ONE 2(4): 
e339. 
 
[8] Friedman, N. (2004). Inferring cellulat networks 
using probabilistic graphical models, Science, 303, 
799-805. 
 
[9] Friedman, N., Linial, M., Nachman, I. and Pe'er, 
D. (2000). Using Bayesian Networks to Analyze 
Expression Data. J. Comput. Biol., 7, 601-620. 
 



[10] Hartemink, A,, Gifford, D., Jaakkola, T., and 
Young, R. (2002). Combining Location and 
Expression Data for Principled Discovery of 
Genetic Regulatory Models. Pacific Symposium on 
Biocomputing, 437-449. 
 
[11] D'Haeseleer, P., Wen, X., Fuhrman, S. and 
Somogyi, R. (1999). Linear modeling of mRNA 
expression levels durning CNS development and 
injury. Pacific Symposium on Biocomputing. 41-52. 
 
[12] Weaver, D., Workman, C. and Stormo, G. 
(1999). Modeling Regulatory Networks with 
Weight Matrices. Pacific Symposium on 
Biocomputing, 112-123. 
 
[13] Mjolsness, E., Mann, T., Castano, R. and 
Wold, B. (2000). From Coexpression to 
Coregulation: An Approach to Inferring 
Transcriptional Regulation among Gene Classes 
from Large-Scale Expression Data. Neural 
Information Processing Systems, 12, 928-934. 
 
[14] D'Haeseleer, P. Liang S. and Somogyi, R. 
(2000). Genetic network inference: From co-
expression clustering to reverse engineering. 
Bioinformatics, 16, 707-726. 
 
[15] van Someren, E., Wessels, L.F.A. and 
Reinders, M.J.T. (2001). Genetic Network Models: 
A Comparative Study. Proceedings of SPIE, Micro-
arrays: Optical Technologies and Informatics 
(BIOS01), 4266, 236-247. 
[16] Wahde. M. and Hertz, J. (2001). Modeling 
Genetic Regulatory Dynamics in Neural 
Development. J. Comput. Biol., 8, 429-44. 
 
{17] de Hoon, M.J.L., Imoto, S., Kobayashi, K., 
Ogasawara, N. and Miyano, S. (2003). Inferring 
Gene Regulatory Networks From Time-Ordered 
Gene Expression Data of Bacillus Subtilis Using 
Differential Equations. Proceedings of the Pacific 
Symposium on Biocomputing. 17-28. 
 
[18] Wimberly, F., Heiman, T., Ramsey, J. and 
Glymour, C. (2003). Experiments on the Accuracy 
of Algorithms for Inferring the Structure of Genetic 
Regulatory Networks from Microarray Expression 

Levels. IJCAI-2003 Workshop on Learning 
Graphical Models for Computational Genomics. 
 
[19]Saavedra, R., Spirtes, P., Ramsey, R. and 
Glymour, C. (2001). Issues in learning gene 
regulation from microarray databases. Technical 
Report IHMC-TR-030101-01, Institute for Human 
and Machine Cognition. 
 
[20] Scheines, R., Spirtes, P., Glymour, C., Meek, 
C. and Richardson, T. (1998). The TETRAD 
project: Constraint based aids to causal model 
specification. Multivariate Behavioural Research, 
33, 65-118. 
 
[21] Bay, S.D., Shrager, J., Pohorille, A. and 
Langley P. (2002). Revising regulatory networks: 
From expression data to linear causal models, J. 
Biomed. Informatics, 35, 289-297. 
 
[22] Zupan, B., Bratko, I., Demsar, J., Juvan, P., 
Curk, T., Borstnik, U., Beck, J.R., Halter, J., Kuspa, 
A. and Shaulsky, G. (2003). GenePath: a system for 
inference of genetic networks and proposal of 
genetic experiments. A.I. in Medicine 29, 107-130. 
 
[23] Holmes, I. and Bruno, W.J. (2000). Finding 
regulatory elements using joint likelihoods for 
sequence and expression profile data. Proc. 8th Int. 
Conference on Intelligent Systems for Molecular 
Biology. 
 
[24] Segal, E., Yelensky, R. abd Koller, D. (2000). 
Genome-wide Discovery of Transcriptional 
Modules from {DNA} Sequence and Gene 
Expression. Bioinformatics, 19, 1273-1282. 
 
[25] Bhaya, D, Dufresne, A, Vaulot, D, Grossman, A: 
Analysis of the hli gene family in marine and 
freshwater cyanobacteria. FEMS Microbiology 
Letters, 2002, 215. 
 
[26] Hihara, Y, Kamei, A, Kanehisa, M, Kaplan, A, 
Ikeuchi, M: DNA microarray analysis of 
cyanobacterial gene expression during acclimation to 
high light. Plant Cell, 2001, 13(4):793-806. 
 


