
Coordinated Data Acquisition on Sensor Webs

Robert Morris 1, Jennifer Dungan1, Petr Votava1,2, and Lina Khatib 1,3

(1) NASA Ames Research Center
(2) California State University, Monterey Bay

(3) Perot Systems Government Services

Abstract

An Earth-observing sensor web is an organization of space,
airborne, or in situ sensing devices for collecting measure-
ments of the Earth’s processes, thus promoting the inter-
disciplinary study of the Earth system. Potential users of a
sensor web, including Earth scientists and authorities respon-
sible for environmental monitoring, disaster mitigation and
management, require a centralized means to effectively ac-
cess sensing resources. A number of approaches to effec-
tively manage a sensor web to ensure useful coverage and
coordination have been proposed. This paper focuses on one
aspect of sensor web coordination related to the formulation
of Earth science goals and their transformation into requests
for sensor web services. Automating parts of this process us-
ing recent advances in intelligent control software technology
will offer improved sensor web effectiveness. In this paper
we describe the needed capabilities and show how these capa-
bilities can be integrated into a full sensor web management
system.

Introduction
An Earth-observing sensor web is an organization of space,
airborne, or in situ sensing devices for collecting measure-
ments of the Earth’s processes, thus promoting the inter-
disciplinary study of the Earth system. Referring to this col-
lection as a web suggests both coverage, i.e., the collection
is distributed over a broad area for long periods of time; and
coordination, i.e. sensing activity between distinct sensors
in the collection can be linked together in location or time.
A number of approaches to operating a sensor web to ensure
useful coverage and coordination have been proposed.

Direct management and control of the resources on a sen-
sor web are distributed. For example, daily scheduling of
observations on the ETM+ sensor on Landsat 7 is managed
by the Landsat science team and mission operations. Users
of ETM+ data typically access the sensor by submitting re-
quests for data stored in the Land Processes Distributed Ac-
tive Archive Center (LP DAAC). More rarely, a user may
submit request that the sensor be retargeted for acquiring
future data. Either way, there are layers of control and man-
agement of sensing resources that are accessed through the
submission of requests.

Potential users of a sensor web, including Earth scientists
and authorities responsible for disaster monitoring, mitiga-

tion and management, require a centralized means to effec-
tively access sensing resources. Efforts such as the OGC’s
Sensor Web Enablement (SWE) activity (?) seek to provide
the interfaces and protocols for centralized access to a sen-
sor web. To be effective, it should be possible for a user
to be able to describe a desired data product without worry-
ing about the details of where and how to retrieve the data,
somewhat in the same way a user of a relational database
uses SQL to describe a desired set of tuples without describ-
ing the physical location of the data.

The research in this paper describes information technol-
ogy that will allow users to formulate goals in terms of a
set of spatial, temporal, and resource constraints. These
goal specifications will then be automatically transformed
into sequences of requests for data that will satisfy the con-
straints. These sequences will be expressed in a language
that can be executed autonomously. This technology will
improve access to the sensor web by providing a layer of
automation between the formulation of Earth science goals
and the acquisition of the required data.

The key to the proposed technology approach is the idea
that a sensor web can be viewed as a complexcontrollable
physical system. From this viewpoint it is then possible
to leverage recent advances inautonomous controltechnol-
ogy to automate the process of accomplishing Earth science
goals byreconfiguringthe resources for acquiring, storing
and analyzing data. The remainder of this paper describes
this approach in detail. First, we define the key notion of
goal-directed data acquisition. Then we describe the archi-
tectural components of an automated goal-directed data ac-
quisition system based on the model of the sensor web as a
complex control system. Finally, an implementation of the
components of the architecture will be described.

Example
Studies of Earth processes typically require data that are dis-
tributed in space and time, requiring the collection of multi-
ple data sets from multiple sensors. For example, consider
the following simple request for cloud-free GOES data:

The goal is to acquire the minimum number of
GOES data throughout a day for a period of a month
while maximizing the cloud-free data. To ensure this,
the National Digital Forecast Database (NDFD) fore-
cast on cloud cover will be acquired. This forecast is

produced every 3 hours and forecasts the data out to
7 days; we will acquire the forecast once a day. If the
sky is expected to be clear, obtain GOES data only per
every 3 hours during the daylight hours. With higher
probability of clouds in the forecast, the acquisition of
GOES data will be every 15 minutes in order to maxi-
mize the probability of obtaining a clear view.

Accomplishing the goal described in this scenario using
current sensor web information technology requires that a
user frequently formulate and submit requests for data. The
user requires detailed knowledge of protocols and locations
for submitting requests. Although the OGC-SWE effort
will provide the infrastructure for centralized access to dis-
tributed data, the user, in general, will still be required to
plan and execute the sequences of requests for accomplish-
ing their goals.

Goal-directed Data Acquisition
The overall objective of an Earth observationcampaignis to
increase understanding and reduce uncertainty in knowledge
of the Earth’s processes. The results of campaigns are used
to advance science (initialize or validate Earth process mod-
els) or may be used directly in near real time for decision-
making (e.g., hazard mitigation). The output of a campaign
is one or moredata products.

A campaign can be defined in terms of one or more goals.
Types of goals include

• Characterize/classify: obtain or identify the values of a
quantity;

• Monitor: watch for a significant change or for the thresh-
old of some quantity to be reached;

• Compare: determine the similarities and/or differences
between or among several instances of the same process
or quantity;

• Validate: determine whether a prediction made by a
model is correct or whether observations from a sensor
are accurate;

• Predict: determine when a specific event will happen or
how a quantity will evolve in the future;

Characterization is the most basic and common of goal
types. Monitoring may be considered as a series of char-
acterizations over time. A validate goal can be considered
a special case of a compare goal, as the former typically
involves comparison of models and measurements. Goals
may involve direct observations and/or Earth system models
or their components. Prediction especially always involves
the use of a model.

An Earth observation goal is a specification of desired
data products. A campaign consists of a set of goals that can
be related in different ways. In addition to goals, a campaign
may consist of other “supporting activities” required to ac-
complish goals. A supporting activity typically involves the
transformation of data into a form that can be used as input
to accomplish a goal. For example, in the GOES scenario a
cloud-cover forecast is transformed into a quantity designat-
ing the frequency with which GOES data are obtained. The

transformation is an example of what we call a supporting
activity.

A goal can be defined by specifying constraints on the
following attributes:

• what is to be measured;

• wherethe measurement(s) are to be taken;

• whenthe measurement(s) are to be taken; and

• how the data are acquired, i.e., the resources to be em-
ployed.

Goals specify products that arise from three potential re-
sources: directly from sensors, from data archives, or from
models. For example, a goal might include a request that
time be allocated on a specific sensor in the future. More
commonly, goals request access to data already acquired and
stored in an archive. Finally, the data product specified by a
goal may require the execution of a model.

A data product may consist of a collection of similar prod-
ucts that aredistributed in space or time. Adistribution
of a data product consists of the number of products col-
lected and their “spacing” in space and/or time. For exam-
ple, “once a week for 10 weeks” can describe a distribution
of a product: it implies 10 instances of a product each sepa-
rated by one week.

In general, the accomplishment of one goal might depend
on the output of another goal. In the GOES scenario above,
the temporal distribution of the GOES data acquisition is de-
termined by a cloud cover forecast product, which forms a
separate goal. This is an example of what we have called
“model-based observing” (?). Similarly, the spatial distribu-
tion of a set of observations of a pollution plume may depend
on the predictions by models of where the plume is expected
to be over time. Here the model determines the spatial dis-
tribution of the observations.

In the example above, there are two goals: a character-
ize goal toacquire GOES dataand a predict goal toNDFD
forecasts.There is also the supporting activity of transform-
ing the NDFD forecast into a updated temporal distribution
for acquiring GOES data. The campaign is depicted visu-
ally in Figure??. The figure shows the goals and supporting
activities and also shows that the goals depend on product
web resources. Again, this scenario is an example of model-
based observing, insofar as part of GOES data goal (viz. the
temporal distribution) depends on the output of a model.

Campaign Specification, Generation and
Execution

The previous section characterized goal-driven sensor web
activity as a campaign, where a campaign is a sequence of
goals of certain basic types, consisting of a set of constraints
on where, when and how the products are to be produced.
This section describes in more detail the process by which
goals can be transformed automatically into sequences of
sensor web requests for accomplishing them.

Data from Earth observing platforms are continually pro-
cessed and stored. Campaign goals are accomplished by a
sequence of sensing, storing and processing actions. Conse-
quently, a more complete description of the resources used

to accomplish campaign goals will include, in addition to
sensors, data archives and the models and other processing
elements for producing processed data products.

Abstracting the goal-directedness of Earth observation
campaigns allows a distinction to be drawn between three
activities:
1. Campaign goal formulation;

2. Planning for accomplishing the campaign; and

3. Execution of the plan.
In our view, goal formulation is primarily a human activity,
planning is an activity that involves a mix of human and au-
tomated capabilities, and plan execution is something that
can be to a large extent automated.

Goal formulation
Based on the discussion in the previous section, campaign
formulation is a process of identifying the campaign goals,
supporting activities, and constraints and inter-dependencies
associated with them. Some language for defining goals
and associated constraints and dependencies is therefore re-
quired. Figure?? shows the GOES scenario arranged as a
tree, with two data acquisition goals (get forecast and get
GOES data) and one processing goal that takes the forecast
data and transforms them into a temporal distribution for ac-
quiring GOES data. Leaves of the tree are labeled with the
spatial and temporal attributes of the goals. Horizontal ar-
rows depict dependencies or other constraints between the
goals. For example, there is a dependency represented by
the arrow between the Cloud Forecast leaf node (depicting
the output of that acquisition) and the left child of the Fre-
quency process node (representing the input to that process).
Similarly, there is a dependency between the output of the
process that computes the frequency of getting the GOES
data and the GOES acquisition goal itself. There are also
links representing the constraint that the forecast data cover
the same region and time as those of the GOES acquisitions.

Planning
The planning process provides the means of transforming
the goal description into a sequence of sensor web activities
that satisfy the goal constraints. Furthermore, because we
want the campaign to be executed autonomously, the plan
should be stated in a language that can be interpreted and
executed as a set of sensor web requests.

The transformation of goals into executable request se-
quence requires two models. First, acampaign modelde-
scribes the decomposition of each campaign goal into a se-
quence of simple activities. We have identified two simple
activities in a campaign: the acquisition of data and the pro-
cessing of data. Each campaign can be depicted as a se-
quence of one or the other of these simple activities. For
example, in Figure?? the GOES campaign is depicted as a
sequence of two data acquisitions and a single processing ac-
tivity. Horizontal arrows represent dependencies among the
activities, whereas vertical arrows depict acquisitions from
the sensor web (through archived data).

Secondly, asensor web modeldescribes the capabilities
and constraints associated with different resources on the

sensor web. This model is used by the planner to ensure that
requests submitted to a resource are “appropriate”, i.e., can
be feasibly serviced by that resource, have the proper for-
mat, and adhere to other constraints that the resource may
impose. For example, a resource model will specify that ac-
cessing a particular archive will require a request be submit-
ted with a certain format, followed by an acknowledgment
of receipt of the request no later than a certain time after the
request, followed eventually by a receipt of a (pointer to) the
requested data.

Implementation and Integration
As a testbed for developing the concepts outlined above,
we are implementing an architecture for coordinating sen-
sor web activities based on four layers:

• A planning layerfor transforming goals into executable
request sequences;

• An execution layerof “web managers” for executing the
sequences;

• A service layerfor providing the protocols and standards
for sensor web access; and

• A sensor web layerproviding a testbed for simulating co-
ordinated web activity.

The layered architecture is illustrated in Figure??. The top
layer includes the software components for translating cam-
paign goals into executable plans. The Web Manager Layer
contains software systems for executing the plans. The OGC
layer provides the interfaces to the sensor web. As a sen-
sor web example, TOPS, described below, we include the
data repositories and models, as well as the sensors them-
selves. In the discussion that follows, we describe key soft-
ware components that will be applied on each layer.

Planning
In the sensor web domain, planning consists of the process
of transforming a specification of goals, constraints and de-
pendencies into a sequence of sensor web requests or pro-
cessing actions. These sequences can include conditional
or iterative behaviors. A concise representation of sensor
web actions and the operators for composing sequences that
satisfy the campaign goals can be based on finite automata.
For example, consider the simple actionRepeatedly get the
latest NDFD forecast. This can be viewed as waiting for a
condition (call itchanged) to become true, indicating that
the latest forecast is available, followed by a command to
fetch the data. In the format of the Labeled Transition State
Analyzer (LTSA) (?), this sequence is depicted as follows,
using a process algebra syntax called Finite State Processes:

Get_NDFD_forecast =
(read.forecast[’changed] ->

command_get_forecast -> END).

The labels indicate state, and the arrows transitions. This
example can be viewed as an instantiation of a pattern that
is repeated for any sensor web action that involves waiting
for the latest data from some model to be available for re-
trieval. These patterns become the basis of the model for

Get GOES data

Spatial
Temporal

Loc Size

Start

Dur

GOES

Distribution

Get forecast

Spatial

Temporal

Loc Size

Start Dur

Cloud

Forecast

Distribution

Daily

equals

equals

GOES Scenario

Frequency

Frequency

Figure 1: The GOES campaign goals arranged as a tree with dependencies

all goal-directed campaign plans. That is, all campaigns
can be viewed as a set of ordered instantiations of such pat-
terns, where the instantiations and orderings arise from the
constraints and dependencies specified in the goals. LTSA
allows for the rapid design and verification of such plan-
ning models, as well as a mechanism for translating the plan
into an executable format in a language called PLEXIL (de-
scribed below). For example, the FSP program

Seq = (read.sky[sv:SkyValues] ->
if (sv == ’clear) then

Get_GOES_data_clear[180]
else Get_GOES_data_clear[15]),

Get_GOES_data_clear[freq:FreqVal] =
(read.time[freq] ->

command_aquire_goes_image ->
Get_GOES_data_clear[freq]).

|| GOES_Plan = (Get_NDFD_forecast || Seq).

represents the GOES data acquisition plan as a sequence
with two parts: getting the forecast, and getting the GOES
data, with a frequency depending on the result of the model
prediction. In addition to providing a concise representation
of the campaign model used in planning, the LTSA tool al-
lows for automated verification of the plans generated from

the model.

PLEXIL
Plan Execution Interchange Language (PLEXIL) (?) is
a language for designing autonomous execution systems.
Control is specified as a set of execution nodes, arranged
in a hierarchy, where leaf nodes are command invocations.
Attached to each node are conditions that drive node exe-
cution. The Plexil Universal Executive interprets a Plexil
representation of an execution control instance. Plexil also
allows for monitoring resources and the status of executing
commands.

The fundamental building block of a PLEXIL plan is a
node, associated with a set of conditions that must be true
for the node to execute and content that describes what gets
executed. Nodes are arranged in a tree structure, represent-
ing different levels of abstraction in the plan. At the leaves of
the tree are nodes that perform primitive actions, including
commands to the system being controlled. In our domain,
leaf nodes correspond to processing nodes or nodes for ac-
quiring data from the sensor web.

PLEXIL plans can be written in a number of ways includ-
ing directly in XML and in more concise languages, using
syntactic enhancements. Figure?? shows a PLEXIL plan

Data Acquisition

Processing

Sensor Web

Archive

NDFD
Distribution

Update
GOES

Data

Cloud cover

forecast

Temporal

Distribution

Figure 2: GOES scenario structure. Arrows indicate dependencies among activities.

for the example GOES scenario written in the functional
language LISP. The plan has a set of nodes which include
two command nodes for requesting forecast data and GOES
data, as well as nodes for retrieving the data and correspond-
ing to the node for processing forecasts into a frequency for
acquiring GOES data.

TOPS
The Terrestrial Observation and Prediction System, TOPS
(?), is a data and modeling software system designed to
seamlessly integrate data from satellite, aircraft and ground
sensors, and weather/climate models, with application mod-
els to quickly and reliably produce operational nowcasts and
forecasts of ecological conditions. Through automation of
the data retrieval, pre-processing, integration, and modeling
steps, TOPS is able to reliably provide data on current and
predicted ecosystem conditions, allowing TOPS data prod-
ucts to be used in an operational setting for a range of ap-
plications. The TOPS system currently holds about 8TB of
data on-line. The acquisition of satellite, ground stationand
model data is automated and the data are obtained in peri-
odic intervals ranging from 15 minutes to several months.

TOPS has been engineered to automatically ingest var-
ious data fields required for model simulations. Ingested
data go through a number of preprocessing filters, stream-
lining the input data to facilitate the simulations. After pass-
ing through a specification interface in which each parame-
ter is mapped to a list of attributes (e.g., source, resolution,
quality), each data field is self-describing to TOPS compo-
nent models such that any number of land surface models
can be run without extensive manual interfacing. Similarly,
the model outputs also pass through a specification interface
facilitating post-processing such that model outputs can be
presented as actionable information, as opposed to just an-
other stream of data.

OGC
The Open Geospatial Consortium’s (OGC) Sensor Web En-
ablement (SWE) activity is establishing the interfaces, stan-
dards and protocols for a centralized access to the sensor
web (?). SWE is divided into a number of components,
each of which contains models, services or XML encod-
ings of various aspects of the sensor web. For example, the
Sensor Model Language (SensorML) contains models and
encodings for sensors, and the Observations and Measure-

ments component contains the same for sensor observations
and measurements. These models and encodings provide an
implementation of the sensor web model described above.
Among the relevant services, the Sensor Observation Ser-
vice (SOS) allows for requests for observations to be sub-
mitted, the Sensor Alert Service (SAS) provides an alert and
notification mechanism to specify how alert or “alarm” con-
ditions are defined, detected, and made available, and the
Sensor Planning Service (SPS) determines the feasibility of
a desired set of requests.

Future Work and Conclusion
The focus of this paper has been on the representation of
Earth science campaigns for sensor web coordination. Two
important capabilities not discussed here are the tools for
goal formulation and plan execution.

A measurement or processing goal requires specifying a
set of values for features related to the location, time, and
measurement type. As noted in the simple scenario we’ve
used throughout the paper, some of these features might not
be known at goal formulation time and may be dynamically
generated during plan execution through model-based ob-
serving. In other cases, however, the features need to be
discovered before an initial plan can be generated. For ex-
ample, the user might require additional information about
sensor web resources, e.g., about whether the needed data
exist or where they are located. This step ofpre-planning
for goal formulationcan be partially automated through the
use of so-called sensor web discovery services. Again, the
OGC effort offers services to support this activity. Future
work will develop an extension to the planning language and
interface capabilities to enable the use of discovery services
for pre-planning during goal formulation.

Executing a plan in a changing environment requiresro-
bustness, an ability to respond to threats to the accomplish-
ment of the plan’s goals that emerge from these changes.
This capability is important in the sensor web domain for a
number of reasons. First, there is uncertainty in the sensor
web domain due to the distributed nature of sensor web con-
trol. As noted above, control of resources in a sensor web is
distributed, sensors may be oversubscribed (i.e., there may
be more requests for a sensor than can be serviced), and re-
quests for access to a resource may be rejected. Second,
the Earth process under investigation is not controllable and
may behave in ways not predicted by any model. Plan exe-

Data and Processing Layer (TOPS)

OGC Layer

SOS SPS

SAS

SensorML

O&M

Data Archive
Earth Science

Models

Sensor Web
Test Suite

Processing
Utilities

Web Manager Layer

Sensor Web
Manager

Product Web
Manager

Knowledge
Web Manager

Coordinator Layer

Planner
Campaign
Model

Sensor Web
Model

User Interface

Figure 3: Software Architecture for Sensor Web Management

cution should adjust to unexpected behavior of the process,
for example, by dynamically retargeting sensors. This is es-
pecially important in disaster monitoring applications where
changes to the observing environment are happening rela-
tively quickly and require a quick response by the observa-
tion system.

Robustness can be designed into an autonomous execu-
tion system in two ways: either by incorporating into the
planning language constructs forcontingent execution(in
effect, allowing for branching sequences), or to enablere-
planningduring execution time. The GOES scenario offers
a simple example of contingent execution. Future reports
will focus on an investigation of the use of these forms of
robustness into sensor web management.

(plexil-plan
 (list-node "n1_root"
 (variables (integer "frequency_of_goes" 15)
 (integer "last_goes" 0))
 (end-condition (> (lookup-on-change "localtime") 600))

 (list

 (list-node "n2_forcast"
 (variables (string "forecast_data"))
 (repeat-condition true)
 (list
 (sequence
 (command-node "Get_NDFD_forecast"

 (start-condition (> (lookup-on-change "forecast_no") 0))
 (command-with-return "get_forecast" (stringvar "forecast_data")))

 (if (= (stringvar "forecast_data") (stringval "clear"))
 (assignment-node "n3_setFreqClear"
 (assignment (intvar "frequency_of_goes") 240))
(assignment-node "n4_setFreqCloud"
 (assignment (intvar "frequency_of_goes") 15))))))

 (while true
 (when (>= (lookup-on-change "localtime")

 (+ (intvar "last_goes") (intvar "frequency_of_goes")))
 (sequence
 (assign (intvar "last_goes") (lookup-now "localtime"))
 (command-node "Get_GOES_data"
 (variables (string "goes_image"))

(command-with-return "acquire_goes_image" (stringvar "goes_image"))))))
)
)
)

Figure 4: PLEXIL executable plan for GOES scenario in Lisp format

