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Abstract - Planetary rovers will continue to evolve in 

the direction of enhanced mobility and more challenging 
terrain. Once the mechatronics are in place, it becomes the 
job of software to exploit the mobility of the platform to 
the maximum degree possible while minimizing exposure 
to risks. Local motion planners for outdoor offroad terrain 
typically use relatively high fidelity models of vehicle 
motion to correctly predict the consequences of candidate 
actions. More correct predictions leads to more intelligent 
behavior, more effective science, and reduced mobility 
risk. Our formulation is based on an efficient inversion of 
the equations of motion to compute the precise controls 
necessary to achieve a desired position and orientation 
while following the contours of the terrain under arbitrary 
wheel terrain interactions. All higher level rover behaviors 
can benefit from such precision, terrain aware controls. 
Applications to instrument placement, wheel slip 
compensation, obstacle avoidance, and regional mobility 
planning will be presented. 

 
Index Terms – motion planning, planetary rover, mobile robot, 

trajectory generation 
 

I. INTRODUCTION 

Effective autonomous mobility in difficult terrain depends on 
a relatively high fidelity capacity to predict the consequences 
of candidate actions. Of course, such predictions depend on 
models of vehicle dynamics and adequate predictions of 
propulsive and steering forces generated by the terrain. While 
the associated terrain mechanical descriptors may not be 
entirely predictable, they can be predicted somewhat and, one 
way or another, every model of vehicle motion makes 
assumptions about how the terrain can be induced to propel 
the vehicle. 

Given a capacity to predict the consequences of actions, the 
job of local motion planning becomes one of choosing one 
from a continuum of possible actions on a regular basis. This 
paper will introduce an approach to choosing actions which is 
based on a new capacity to invert the model of system 
dynamics in real time. 

A. Vehicle Modeling 
A somewhat general description of vehicle dynamics is a 

nonlinear vector differential equation of the form:  
( )t,,uxfx =&  (1) 

The model may be kinematically driven with velocity 
inputs or dynamically driven with forces, as the case requires. 
Let the state vector x include at least the position (x,y,z) and 
orientation (φ,θ,ψ) of the vehicle expressed relative to a frame 
of reference fixed to the ground.  

Very often, the propulsive forces generated by the vehicle 
are limited in magnitude and direction for several reasons 
including terrain limitations. Nonholonomic constraints 
(expressing the incapacity of wheels to move sideways) do not 
entirely apply under conditions of wheel slip but in either 
case, wheeled vehicles remain underactuated whether the 
wheels slip or not. Typically, the two degrees of freedom of 
linear velocity in the forward direction and angular velocity in 
the local tangent plane are actuated indirectly by adjusting 
wheel/track speeds, steer angles etc. This means one rate 
degree of freedom out of the remaining three ),,( ψ&&& yx  is 
lost. 

The impact of these facts on planning and control is that 
even the simplest useful models of mobility are underactuated 
differential equations. Furthermore, terrain shape must be 
known to predict motion because steering takes place in the 
instantaneous terrain tangent plane. Intuitively, the same 
steering signal executed on flat and then on nonflat terrain will 
drive a vehicle to two different places. 

B. Problem Statement 
In many contexts, the pose of the vehicle ),,( ψyx , not its 
rate, is the variable of interest and this problem of precision 
pose control is the one we address here. The task of driving a 
fork truck to pick up a pallet (Figure 1) illustrates the problem 
well.  



 
Fig. 1. In order to pick up a pallet, a fork truck must 

achieve a fairly precise target posture characterized by 
constraints on terminal position, heading, and 
curvature. 

 
Vehicle mobility constraints assert that the pallet cannot be 
approached by moving sideways. Therefore, consider solving 
the problem in reverse by imagining a vehicle at the terminal 
state which is moving backward toward the start. Consider 
turn radius and its rate to be limited.  It becomes intuitively 
clear that the initial maneuver in the forward direction must be 
a turn to the right although the pallet is initially to the left of 
the fork truck. If the fork truck simply drives left toward the 
pallet, it will not achieve the right heading. This difficulty 
arises in part because of underactuation. It is not possible to 
drive toward the goal and then rotate to the correct heading at 
the last minute because heading cannot be changed quickly or 
independently from position.  

The task of controlling vehicle pose is that of inverting the 
system dynamics differential equation to produce the controls 
which will achieve a goal terminal state. Since the terminal 
state is an integral of the dynamics, the problem is to select a 
function )(tu  which, when placed inside this dynamics 
integral, will produce the desired terminal state: 
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There will usually be an entire continuum of functions )(tu  
which could solve the problem but only one is needed. 
Intuitively, a slight change to the beginning of a solution can 
be compensated by another later while still achieving the 
desired terminal state. A human driver somehow solves this 
problem with little effort but techniques to solve it 
computationally are far from immediately obvious. 

C. Prior Work 
 

Trajectory generation has ancient roots in the theory of 
differential equations, the calculus of variations, and 
Lagrange’s variational approaches to dynamics. From basic 
mathematics, techniques are available to both optimize an 
objective functional over an unknown curve and to require 
that boundary conditions on the solution be satisfied. Some of 
the earliest work related to trajectory generation of direct 

relevance to robotics is work on curves of minimal length 
under constraints on curvature [1]. Kanayama's original work 
on clothoids introduced the idea of using continuous 
piecewise linear curvature curves for robot trajectory 
generation [2]. Some work has concentrated on the problem of 
producing sequences of simple primitives which are optimal 
overall [3].  

In [4], a holonomic geometric path is found in an obstacle 
field and path segments are smoothed using optimal control. A 
near real-time optimal control trajectory generator is presented 
in [5], which solves eleven first-order differential equations 
subject to the state constraints. Work on the problem of 
trajectory generation in arbitrary terrain is rare. In [6] a 
planner is presented which initially assumes flat terrain but 
then trims the results to accommodate rough terrain.  

Our own work on this topic in recent years is summarized in 
[7][8]. Our most recent approach, applicable to this paper, is 
characterized by the use of numerical methods for all aspects 
of the algorithm – including dynamics integration, 
linearization, and inversion. We express an unknown control 
input in terms of unknown parameters. In doing so, we 
convert an original optimal control problem into one of 
nonlinear programming and solve for the unknown parameters 
using established techniques. 

II. IMPLEMENTATION 

This section presents the overall the software 
implementation.  

  

Fig.2. The system architecture distinguishes three main 
elements, only one of which is vehicle dependent. 
Each represents a computational loop where the 
innermost loop is on the right side. 

A. Architecture 
A three level, three loop architecture is used as illustrated in 
Figure 2. The highest level loop (Trajectory Generation - left 
side) inverts the dynamics integral. The medium level loop 
(Motion Prediction – center) integrates the equations of 
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motion. The lowest loop (Vehicle Model – right side) is the 
differential equation itself. These elements are distinguished 
in software for reasons of generality. While the vehicle model 
is clearly vehicle dependent, the solution for integration of the 
differential equation and the solution of the nonlinear 
parametric terminal state equations are entirely vehicle 
independent. 

B. Parameterized Controls 
 
A parameterized control is a mapping from a parameter 

vector (a few numbers) onto a continuous function. The fact 
that the parameters express a relatively small number of 
degrees of freedom is key to their capacity to reduce 
computation. Figure 3 illustrates a typical case: a trapezoidal 
linear velocity.  

 Fig.3. Two examples of parameterized controls. Any 
parameterization creates a mapping from a few 
numbers (the parameters) onto a continuous function. 

The corresponding parameter vector consists of initial, final 
and traverse velocities, and the accelerations between them. 

C. Trajectory Generation 
 
The numerical method applied to find the parameter 

values is Newton’s method. The terminal state in (2) is 
considered to be a nonlinear function of the parameters and an 
initial guess for the solution parameters is refined by repeated 
solution of a locally linear approximation. Since the partial 
derivatives of dynamics integral cannot generally be found 
analytically, estimates of the derivatives are computed using 
finite difference approximations.  

D. Motion Prediction 
 

Any method for integrating a differential equation is 
potentially applicable at this step. Although Runge-Kutta may 
be more efficient, we have been able to use Euler’s method of 
integration so far to determine the change in vehicle state over 
a small time step (Δt): 

( ) ( ) ( ) tt,,ttt Δ+=Δ+ uxxxx &  (3)
We enforce terrain contact constraints explicitly at each time 
step by computationally allowing the vehicle to settle on the 
terrain to achieve minimum error between wheel contact 
points and terrain elevations. This procedure also produces 
suspension deflections as a byproduct in quasi-static cases. 

E. Vehicle Model 
Our models in most cases are kinematically actuated – driven 
by velocities rather than forces. Such models are sufficiently 
accurate for our purposes but much faster to compute than 
doubly integrated, dynamically actuated models. Velocities 
requested by the autonomy layer are mapped onto desired 
wheel speeds. Effects such as wheel slip are incorporated at 
this stage by expressing their dependence on speed and slope 
to produce the response wheel speeds. These responses are 
mapped onto response velocities of the entire system. 

F. Runtime 
Runtime depends somewhat on terrain roughness. Over a 

large number of test cases, a factor of 3 separates the easy 
cases from the difficult ones. As illustrated in Figure 4, most 
of this is due to an increase in iterations. 

 
Fig.4. Algorithm Runtime. These results are for several 

hundred highly complicated test cases run on a 1.8 
GHz laptop computer. 

These results are for a highly complicated 12 actuator 
vehicle model including wheel slip and very rough terrain. 
Trajectory generation queries for simpler vehicle models on 
flat terrain are solved in under a millisecond.  

III. APPLICATIONS 

The algorithm has been refined on numerous mobile robot 
research programs over the last decade and it has recently 
been adapted to planetary rovers on the Mars Technology 
program. Some of the potential applications for planetary 
rovers are described below. 

A. Basic Pose Control and Instrument Placement 
The problem of placing a science instrument on a rock is 

equivalent to the forktruck problem described in Figure 1. The 
vehicle must compute in real-time a trajectory which achieves 
the correct terminal position, heading and curvature. With 
reference to Figure 1, the problem is to determine a feasible 
motion from frame F1 to frame F2 given a measurement of the 
relationship between frame F1 and frame P. 

B. Off Road Path Following 
One class of path following algorithms is based on the 

concept of a corrective trajectory terminating at a 
reacquisition point somewhere forward on the path. We have 
implemented an adaptive version of such an algorithm as 
illustrated in Figure 5. A search is conducted along the target 
path to determine the reacquisition trajectory which provides 
best tradeoff between the aggressiveness of the maneuver and 



the integral of crosstrack error. Each point of reacquisition has 
the correct heading and curvature and the optimal control 
formulation adjusts lookahead automatically as speed, path 
curvature, and crosstrack error vary over time. 

 
Fig.5. Adaptive Lookahead Path Following. A model 

predictive optimal controller chooses an acquisition 
point on the goal path which is the best tradeoff 
between aggressiveness and crosstrack error. 

C. Model Predictive Slip Compensation 
We have used our algorithm to develop mechanisms to 

predictively compensate for wheel slip. As Figure 6 shows, 
models of how wheel slip depends on slope can be inverted 
readily to cause the vehicle to approach a sloped goal on the 
high side in anticipation of sliding into it from above.  Of 
course, such models will never be perfectly accurate but 
continuous compensation of this nature is likely to be far more 
effective than ignoring slip entirely. 

 
Fig.6. Predictive Slip Compensation. The vehicle model in 

this cases anticipates a sideslip velocity which is 
proportional to slope and forward velocity. The 
trajectory generator automatically compensates by 
approaching the goal from above. 

D. Control of Hyperactuated Systems 
An important goal of the trajectory generator is that of 

exploiting the full maneuverability of a vehicle with six 
steered and driven wheels. As shown in Figure 7, our 
algorithm can exploit the capacity of such a rover to drive 
sideways in order to orbit around a science target and deploy 
instruments most effectively. 

 
Fig.7. Hyperactuated System Control. The Rocky8 Mars 

rover prototype has six drive and steered wheels. 
Exploiting its capacity to move sideways leads to 
efficient instrument placement. 

E. Off-Road Hierarchical Control 
Motion planners used in off-road environments often 

follow a low fidelity global plan using a higher fidelity local 
planner which enforces dynamic feasibility constraints, avoids 
obstacles, and follows the global guidance. We have used the 
trajectory generator to sample uniformly in the workspace of 
the vehicle while terminating each candidate motion at the 
heading desired by global planning as illustrated in Figure 8.  

 
Fig.8. Motion Planning in Cluttered Offroad Environments.  

In this case, the search points at the ends of the 
trajectories derive their headings from the global plan. 

 



F. Off-Road Global Search Space Design 
The capacity to generate feasible motions to arbitrary 

reachable states makes it possible to construct search spaces 
for global planners which exhibit useful symmetries, encode 
only feasible motions, and are continuous where primitive 
motions join. The application of search algorithms to such a 
search space can produce complicated maneuvers like n-point 
turns automatically. Such a search space is illustrated in 
Figure 9. 

 
Fig.9. Feasible State Lattice for Global Planning.  A 

regular lattice of states is laid out on terrain and the 
trajectory generator is used to connect them locally 
with feasible motions. 

IV. CONCLUSION 

Sampling and searching in the space of controls or actions 
is a well-established technique in motion planning for 
ensuring feasible local motion plans. It has been used almost 
universally in off road ground robotics for some time. The 
rationale for the use of this technique is that the resulting 
motions are at least dynamically feasible even if they do not 
quite take the robot where we would like it to go. A more 
compelling rationale is that better techniques – ones that 
produced feasible motions to precisely designated target states 
- did not exist. We have presented such a technique in this 
paper. 

A capacity to efficiently produce a feasible motion to any 
reachable point in state space is enabling in several ways. It 
leads to robots that can interact with their environments in 
more purposeful and intelligent ways because getting to the 
precise somewhere where the job needs to be done becomes 
possible. It leads to robots whose precision understanding of 
their own mobility enables precision high speed maneuvering 
in challenging circumstances including those involving 
complicated terrain interactions, narrow corridors around a 
nominal path, and dense obstacle fields. 
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