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Abstract—With a new generation of astrophysical simulations and surveys on the horizon the astrophysics community is faced
with the exciting challenge of how to process and analyze an apparently ever increasing data volume. Developing algorithms that
scale with the size of data and utilize efficiently the massively parallel compute resources that are coming on line does, however,
require substantial expertise in parallel algorithms. The steep learning curve associated with developing in this environment limits
the number of astronomers who actually utilize Petabyte data sets there by hindering our ability to extract information from surveys
in which we invest many hundreds of man years of work. We discuss here the development of algorithms for astronomy ranging
from correlation functions to the tracking of moving sources that can be implemented on single and multiprocessor machines. We
describe a framework, Ntropy, that we have developed to ease the movement of serial algorithms to massively parallel systems.
Our experience has shown that not only does our library save development time, it also delivers an increase in serial performance.
Furthermore, Ntropy makes it easy for an astronomer with little or no parallel programming experience to quickly scale their application
to a distributed multiprocessor environment. By minimizing development time for efficient and scalable data analysis, we enable wide-
scale knowledge discovery on massive datasets.

Index Terms—Parallel development tools, parallel libraries, massive astrophysical datasets, data analysis
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1 INTRODUCTION

Astrophysics is witnessing a flood of data from new ground and space
based telescopes and surveys. Virtual observatories (VOs) such as the
National Virtual Observatory (http://www.us-vo.org) will federate all
of these databases under all-encompassing umbrellas, making data ac-
cess easier than ever before and providing the astronomer with a del-
uge of information. However, if we are to realize the full potential of
these massive datasets, we must be able to explore, analyze and in-
teract with them as easily, perhaps even more easily, than we could
when they were small enough to fit on individual workstations. This
is a daunting task, since the accession rate in data available to the as-
tronomer is far surpassing the growth rate in speed of single CPUs.

On the other hand, multiprocessor platforms are becoming increas-
ingly common. Computational clusters at department, university, and
national levels are growing ever larger in size. Perhaps the most no-
ticeable change to the average astronomer is the introduction of multi-
core processor machines. Already, CPU manufacturers are offering 4
cores on a single chip. Intel has committed to building an 80 core chip
within 5 years. Soon everyone’s desktop or laptop machine will be a
multiprocessor platform, some perhaps even massively parallel ones.

Concurrent with VO development and the progression towards in-
creasingly wider parallelism is the construction of the protocols for
interacting with distributed multiprocessor architectures. These tools
will allow users with large numbers of small, independent tasks to
quickly and easily distribute their workload to hundreds or thousands
of processors. However, there will still remain a class of problems
that cannot be trivially partitioned in this manner. These are cases
where the entire dataset must be accessible to all computational ele-
ments and/or the elements must communicate with one another during
the computation. Cluster finding, tracking, n-point correlation func-
tions, new object classification, and density estimation are examples
of problems that will require the astronomer to develop programs for
multiprocessor machines in the near future.
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1.1 Shortening development time for parallel data analy-
sis applications

Since their introduction in the late 1980s, massively parallel computers
have demonstrated one thing: they can extremely time-consuming to
program. After climbing the steep learning curve of parallel program-
ming, the scientist can look forward to spending many times longer
parallelizing their algorithm than it took to write it in serial. For
this reason, the high-performance computation (HPC) community is
largely dominated by simulations. Even if it takes 10 or 20 person-
years to write a parallel simulation code, the economics still favor
its development since it is typically reused for many years by many
people. Data analysis, alas, does not work this way. Every scientist
has their own analysis technique. In fact, it is largely what makes
us each unique as researchers. For this reason, astrophysicists do not
typically have the time or resources to develop analysis codes from
scratch to run on national compute resources, or even smaller depart-
mental clusters. For the full scientific potential of sky surveys to be
realized, we need to create a way to facilitate the development pro-
cess of data analysis codes on massively parallel distributed memory
platforms (MPPs).

Procedurally, tree-based algorithms usually employ divide-and-
conquer strategies that are relatively straightforward to parallelize.
The difficulty for achieving high scalability emerges when the size
of the dataset exceeds the memory capacity of a single computational
node, and A) the tree walks span the domains of many nodes and/or B)
nodes must update data up other nodes as the calculation progresses.
In these scenarios, which are common in astrophysics, the time re-
quired to communicate between processors bogs the calculation down.
Thus, we focus on enabling problems in this regime.

Our research has been to design an approach that exploits the fact
that while the number of questions the astronomer may ask of the data
is limitless, the number of data structures typically used in process-
ing the data is actually quite small. In fact, most high-performance
algorithms in astrophysics use trees and their fundamental data struc-
ture, and most specifically kd-trees. This is because they are typi-
cally concerned with analyzing relationships between point-like data
in an n-dimensional parameter space. Therefore, our library, called
Ntropy, provides the application developer with a completely general-
izable parallel kd-tree implementation. It allows applications to scale
to thousands of processors, but does so in a way that the scientist can
use it without knowledge of parallel computing thereby reducing de-
velopment time by over an order of magnitude for our fiducial appli-
cations. Furthermore, Ntropy is also highly efficient even in serial and
provides a mechanism whereby the scientist can write their code once,



Fig. 1. Wallclock time required to perform a typical 3-point corre-
lation function analysis on a dataset of galaxies vs. the number
of galaxies in the dataset. The upper dot-dashed line is the
naive algorithm that compares every particle combination and
scales as O(N2.8). The bold long-dashed line is the time re-
quired to compute using an efficient tree-based algorithm that
scales, in the best case, as O(N1.4) (with the worst case be-
ing O(N1.8). The bold solid line shows the time required for the
same calculation on 2048 processors. The non-bold lines indi-
cate these same calculations done in the year 2012, assuming
a doubling in CPU capability every 18 months. The stars show
the estimated time required to process the LSST dataset of 1
billion galaxies in 2012.

then run it on any platform from a workstation to a departmental Be-
owulf cluster to an MPP. The scale of the computation is finally set
by the scale of the scientific problem rather than the development time
available to the researcher.

The last 2 decades have seen the development of many paralleliza-
tion methodologies. Our goal in designing Ntropy was to take the key
components of a number of existent strategies and combine them into
an intelligent implementation that enabled scientists to write highly
scalable parallel tree-based applications in much less time than it
would have taken them to write the same thing “from scratch.” There-
fore, the main focus of our research was not necessarily to create a
novel parallel algorithm. What was new, however, was the experi-
ment in combining several existing parallelization strategies under a
single umbrella in a manner that was most useful for a specific target
community. Our motivation for doing so was based on the success
of the N-body cosmology code “PKDGRAV” [17], a highly scalable
tree-based gravity calculator which has been in production for over
10 years and runs efficiently on a multitude of platforms, from small
SMPs to MPPs with thousands of processors. PKDGRAV success-
fully combines several of the strategies that we will discuss below into
a single application. The purpose of our research was to see if such a
selective deployment approach could be extended from a specialized
astrophysics application to a more general-purpose parallel tree library
that was both highly scalable and straightforward for scientists to use.

In the following paragraphs, we discuss the pros and cons of sev-
eral parallelization techniques. The literature offers a broad range of
methodologies for efficiently parallelizing data trees, and the ones that
we ultimately chose for Ntropy are by no means unique. The general
difficulty in assessing them is that most have only been tested on rela-
tively small platforms (8 to 32 processors) whereas we are interested in
scaling to thousands of computational elements. Thus, we largely re-

strict our discussion to strategies that are actively being deployed and
benchmarked (with publications) on MPPs today. Our goal is to use
the lessons they provide to design a methodology that leverages their
strengths while avoiding their drawbacks. For the most part, codes on
modern MPPs use message passing libraries, so our first metric evalu-
ating Ntropy will be to approach the high scalability of message pass-
ing. Our second metric will be to severely reduce the development
time of a tree-based application in comparison to a purely message
passing implementations.

1.2 Agenda-Based Parallelism

In an agenda-based approach, the programmer exists in a serial-like
universe where he essentially writes serial code. Parallel speedup
arises when certain tasks can be executed simultaneously by all pro-
cessors. A common example is a DO loop. A loop of N iterations can
be distributed over NPE processors, with each processor calculating
roughly N/NPE iterations, provided that all iterations are independent
from one another. The advantage is that the programmer need only
write a serial pieces of code, and the compiler takes care of all of the
gorey details of message passing and synchronization.

There have been many agenda-based compilers developed over the
years, and it would be impossible to examine most of them however
briefly. Nonetheless, it is possible to make some generic observations.
One stumbling block for many was that they were designed for shared
memory architectures, which are relatively rare these days. Another
problem is that most have difficulty scaling beyond a few hundred
processors, largely because they focus on turning a serial problem into
a parallel one. The compiler proceeds along a single thread until it
identifies instructions that can be conducted in parallel, whereupon it
launches the parallel computation, then synchronizes at the end. The
common obstacle to scalability in this approach is that parallel tasks
end up becoming too “fine grained.” Spawning tasks and synchroniz-
ing is expensive—sometimes they can require nearly 1 million CPU
cycles on distributed memory machines (including NUMA systems)—
and this paradigm demands that this be done frequently. Furthermore,
between parallel regions there is often serial code, and Amdahl’s Law
tells us that any amount of serial code will rapidly squelch scalabil-
ity. For these reasons, agenda-like codes are rarely seen running on
the MPPs of today. Some examples of popular distributed memory
compilers are Co-array Fortran, UPC, and HPF [11, 12, 3, 8].

Some agenda-based parallel compilers attempt to provide higher-
level capabilities in order to increase granularity. A good example of
this strategy is ZPL [2], which provides the programmer with a way to
manipulate an n-dimensional shared array in a spatially aware manner.
One can operate on the array as a whole: e.g. shift array elements along
principle axes. One can also operate upon array elements conditional
to their location in the array: e.g. add my value x to that of my neighbor
above me if that neighbor has flag f =TRUE. By giving the program-
mer the ability to string together very high-level array manipulation
commands, ZPL enlarges the granularity of the computation, allow-
ing it to scale. Provided that your algorithm fits into this paradigm,
ZPL is an excellent solution that may potentially scale to thousands
of distributed processors. Unfortunately many scientific applications
cannot be expressed using this formalism, and therefore find ZPL too
restrictive. A common limitation of such high-level agenda-based ap-
proaches is that your problem must map onto the high-level instruc-
tions and structures that the compiler provides. In general, efforts thus
far have worked well with regular arrays, but can be exceedingly cum-
bersome for algorithms that use irregular and/or adaptive data struc-
tures like trees. Nonetheless, efforts like ZPL demonstrate that it is
possible to scale well using agenda-based parallelism provided that
each high-level instruction in one’s agenda maps easily onto the com-
putation. We will revisit this observation when we discuss Ntropy.

1.3 Explicit message passing

In contrast to agenda-based compilers, message-passing libraries pro-
vide almost limitless flexibility and generality. Because the program-
mer is in control of any interprocessor communication, he can use his
insight into the algorithm to maximize its granularity and minimize the
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effect of network latency. For these reasons, nearly all applications
that run on modern MPPs use message-passing libraries. The most
common library by far is MPI. Like most interfaces that offer a high
level of control and generality, the drawback of MPI is that it forces the
application developer to program at a very low level. This can be very
time consuming if the thread domains are decomposed using structures
more complex than regular grids, because it becomes difficult to use
MPIs collective communication facilities. Furthermore, MPI poses an
interesting paradox: even though MPI enables largely asynchronous
execution, the more synchronous one’s approach is, the easier it is to
express it in MPI. Similarly, as one’s algorithm approaches the ideal
of few barriers and lots of asynchronous communication, it rapidly be-
comes quite challenging to implement in MPI. As we will demonstrate
later, we designed Ntropy so that it simplifies the process of writing an
asynchronous application with minimal barriers.

1.4 Remote Method Invocation

One intriguing evolution of the explicit interprocessor messaging
paradigm is ARMI, an advanced “remote method invocation” library
for C++ [14]. RMI (or RPC for “remote procedure call”) generically
refers to a facility for launching procedures or methods on a remote
processing element. Message passing libraries like MPI have a data-
centric view of communication in that they simply transmit data from
one location to another. RMI, on the other hand, means that you pass
an executable procedure, usually accompanied by data, between phys-
ical locations. Note that each approach is essentially interchangeable:
it is possible to package routines such that they can be passed via MPI
(in fact, this is what ARMI does). Likewise, it is possible to use RMI
to transfer data: if thread T needs to get data x from processor P’s do-
main, for example, T would invoke a method on P that would return
x. Some advantages of ARMI—which is written on top of MPI—is
that it is conceptually cleaner than MPI, and it attempts to aggregate
multiple remote invocations together into a single message, thereby
reducing communication overhead. However, programming in ARMI
still does not guarantee scalability. Navigation of adaptive data struc-
tures is typically a serial operation: one looks at a node or level of
the structure, then uses that information to advance to another loca-
tion, which must then be acquired. Therefore, message aggregation
does not, in and of itself, help us in our quest for extreme scalability
for tree codes. However, RMI does offer a straightforward mechanism
for using an agenda-based approach to invoke one’s own functions on
multiple processors (rather than only those provided by the compiler).

1.5 Split-Phase Execution and Workload Virtualization

One compiler that has enjoyed some important successes is
CHARM++, a parallel extension to C++ [5]. Like ARMI, CHARM++
also treats communication as the process of sending a methods, along
with relevant data, amongst compute elements. CHARM++ differs
from traditional RMI approaches in that it uses “split-phase execu-
tion”: once a remote method is invoked, the invoking thread never
receives a return value, nor can it check on the invokee’s status. In or-
der to accomplish a roundtrip message, for example, object A invokes
object B. When object B completes its RMI, it must then reinvoke ob-
ject A. In practice, however, the goal of split-phase execution is not
to facilitate moving the data to where the computation is, but rather to
make it easy to move the computation to where the data is. In other
words, B simply carries on with the part of the calculation that needed
the remote data and might not report back to A at all.

Split-phase execution complements CHARM++’s second important
feature: process virtualization. In this paradigm, one typically cre-
ates 100 or 1000 times as many virtual compute threads as processors,
and the threads migrate between processors redistributing workload as
needed [6]. In our example above, when a object A invokes remote
object B, it can elect to suspend itself until it is re-invoked by B. In the
meantime, another object will execute. Therefore, a physical proces-
sor should always be busy doing productive work and never have to
wait for messages to complete. This paradigm has proved successful
in the implementation of NAMD[13], a molecular dynamics code that
scales to thousands of processors.

ntropy_ReadParticles(…, (*myReadFunction));
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Fig. 2. How to use Ntropy to read in a data file in parallel. The user writes the
computation “agenda” which runs on the master thread only and steers the appli-
cation. In the agenda, they call the Ntropy service ntropy ReadParticles()
in which they specify a custom task myReadFunction(). Instances of that task
are then launched on all threads.

Experience has shown that CHARM++’s split-phase execution
strategy does not always mask communication overhead, however.
The language is quite successful when each virtual thread (e.g. a
“patch” of molecules in a molecular dynamics simulation) only needs
to interact with a small number of other processors. In cases like this,
the split-phase execution model of CHARM++ is an advantage to the
programmer. Many scientific problems, however, demand that each
computational task (e.g. a particle in an n-body simulation) access an
large volume of data distributed across a very broad range of proces-
sors. Attempts to use CHARM++ for tree-based calculations, for ex-
ample, became quickly saturated by network overhead because of the
large number of messages that are spawned during the tree walk. In
the end, reducing the number of messages turned out to be the decid-
ing factor, not masking them with computation. The way to reduce the
number of messages is to fetch needed off-processor data via a round-
trip communication (as detailed above), then cache it locally for future
requests by other virtual threads.

The problem with using the split-phase execution model for round-
trip communication is that one must design each method in one’s appli-
cation so that it can be reinvoked at every point it requires an element
of distributed data. For most algorithms, this demands substantial re-
design. Therefore, for certain problems that must use round-trip data-
centric messaging, split-phase execution can make the program much
more difficult to write, not easier. Since Ntropy is designed for tree
walks, it focuses first on reducing network communication via data-
centric messaging, then masking what remains. Since our goal is to
make our library as simple as possible to use, we do not employ the
split-phase RMI model. Process virtualization, on the other hand, is
very useful concept to keep in mind for load balancing.

2 METHODOLOGY

Algorithms that distribute a tree across many computational nodes
have historically proved to be among the most difficult to parallelize,
because the most effective data structure for organizing the particles,
a tree, is adaptive and irregular. Moreover, a typical treewalk of-
ten examines many tree cells that are spread across many processors.
In order to achieve scalability, Ntropy employs several data manage-
ment techniques like caching of interprocessor data transfers, intelli-
gent partitioning of the high-level tree nodes, and dynamic workload
management. All of these capabilities are time-consuming to write
from scratch. Using the Ntropy library, however, the developer gets
all of them for free. Consequently, we have been able to reduce the



time required to develop scalable parallel data analysis applications
by over an order of magnitude. Furthermore, many of our Ntropy ap-
plications actually perform better than competing efforts written with
much greater effort from scratch. Our success proves that it is possible
to build a general-purpose parallel library that is easy to use, efficient,
and scalable.

2.1 Ntropy Structural Components

Fundamentally, Ntropy is a library that provides communication and
thread control infrastructure for parallel kd-tree computations. It
incorporates a variety of concepts such as computational agendas,
remote-method invocation (RMI), and message passing. The strength
of Ntropy is that it exploits each of these concepts when necessary and
avoids them when they hinder scalability or usability.

The first piece on any Ntropy application is the agenda, which
serves as a computational steering mechanism and as an RMI launch
pad for invoking parallel subroutines. An example of an Ntropy
service would be to read in data in parallel from an external file and
is illustrated in Figure 2. In the agenda, which can be written in C,
C++, or Python, the user calls ntropy ReadParticles(...,
nParticles, fileName, (*myReadFunction));. The
Ntropy infrastructure then invokes the method myReadFunction()
on all of the compute threads. Ntropy offers facilities for RMI on
both generic and specialized routines. Our example uses the
specialized interface ntropy ReadParticles() that tells
Ntropy that the method the user is invoking is designed to read
in nParticles elements of particle data from file fileName.
This causes Ntropy to do a little bit of extra work to make life
more convenient. Each compute node calculates what its begin-
ning and end particle will be, then allocates sufficient storage
space. After that, each thread invokes the custom callback func-
tion myReadFunction(fileName, startParticleID,
nParticlesToRead, ptrToParticles) which opens the
file fileName, forwards to the particle startParticleID,
reads in nParticlesToRead, and copies the data into the
location pointed to by ptrToParticles. Once all instances
of myReadFunction() have returned, the compute threads
automatically signal completion to the master, which then returns
from ntropy ReadParticles(). Ntropy’s RMI facility makes
the programmer’s life much easier by furnishing a simple interface
for coordinating parallel computation. The beauty of this approach is
that it retains ease of workflow specification inherent in agenda-based
compilers, but also permits customization at the per-thread level that
maximizes the granularity of the computation.

2.2 Simplifying Access to Distributed Data

In principle, an RMI interface is general enough to also provide data
transfer abilities. In practice, however, we have found that algorithms
benefit greatly from a shared-memory view of distributed data. In
other words, RMI is great for managing the flow of computation across
nodes but, once those computations have been invoked, it is easier for
the algorithm developer if they can be presented with an interface that
makes distributed data behave as closely as possible to shared data.
Furthermore, it is substantially easier to achieve high scalability if we
treat methods and data differently, since we can reduce messaging ac-
tivity through off-processor data caching (a capability that we discuss
later). For these reasons, Ntropy presents a separate, simplified mech-
anism for interacting with globally shared data on distributed memory
machines: “simplified distributed data access” or SDDA.

In the above example, the instances of myReadFunction() do
not have to communicate with one another. Now let us consider an-
other task, myTreeWalk(), where a particle pi needs to examine
another particle p j somewhere in the global dataset of all particles P.
P is distributed across all processors, and pi may or may not be physi-
cally located on the same processor as p j . This is where the advantage
of SDDA comes into play. In Ntropy you can register certain blocks of
memory to be “shared,” i.e. visible to all threads. This causes Ntropy
to map all of the local blocks that were registered onto a single global
address space that is accessible via a simple Acquire() command.

In our example, if all threads register their local blocks of particles,
then we can access any particle p j in the set of all particles P simply
Acquire-ing p j . Acquire() will determine the physical location
of particle p j and conduct the necessary operations to retrieve that data
wherever it resides, after which it simply returns a pointer to p j .

The philosophy behind the SDDA approach is based upon the ob-
servation that the overwhelming majority of variables in scientific
computations are local to each computational thread. Thus, each task
is essentially a serial subroutine that only occasionally accesses glob-
ally shared data. Forcing the application developer to call functions
to interact with shared data is therefore a minimal burden, but it does
have the advantage of making it obvious to the programmer where po-
tentially expensive interprocessor communication might occur. On the
other hand, it is far easier for the developer to use our SDDA interface
than to implement the data transfer by hand in a message passing li-
brary. Furthermore, we shall demonstrate that the Ntropy SDDA layer
offers many more performance advantages than a straight MPI call.

2.3 Achieving High Scalability

“Underneath the hood” of Ntropy are two capabilities that substan-
tially increase scalability: interprocessor data caching and dynamic
workload management. These are features that are time-consuming
for an application developer to implement themselves, but come “for
free” when using our library.

2.3.1 Interprocessor data caching

When the application developer registers a block of shared data (as de-
scribed above) Ntropy logically maps that data onto cache lines. When
an Acquire() call results in an off processor memory access, the en-
tire cache line that holds the data of interest is fetched. The idea is that
if the thread needed one piece of data, it will likely need the element
next to it as well. Furthermore, future Acquire() calls for that same
piece of data will not need to go off processor because the data will al-
ready reside in the cache. This mechanism results in fewer than 1 in
100,000 requests for off-processor data requiring a message to be sent
in current Ntropy applications.

At the moment, Ntropy has two different kinds of caches: read-only
and “reduction.” The read-only cache is the simplest: the application
is not allowed to write to shared memory blocks while the cache is
active. The reduction cache is for data that is updated as the computa-
tion progresses, and is implemented in a non-blocking manner that re-
quires no locks or other synchronizations, making it superior to other
parallel concurrent-write mechanisms which must incur penalties to
enforce cache coherency. The only constraint is that updates to the
cache elements must be commutative and associative (similar to a par-
allel reduction operation). When a reduction cache is registered, the
developer provides a reducer function, essentially the reduction oper-
ator, that takes as input the new value and the old value of the cached
element, then returns a single new value. Nearly all read-write opera-
tions on shared data in scientific applications can function with within
these constraints, and doing so alleviates all of the inefficiencies intro-
duced by cache-coherency issues.

2.3.2 Dynamic workload management

Load balancing becomes increasingly crucial when scaling to thou-
sands of processors. Most existing applications for massively parallel
platforms use a predictive load balancing scheme where the applica-
tion analyzes and distributes the entire workload before the computa-
tion progresses. This is a viable scheme for simulations—which com-
prise the overwhelming majority of MPP applications—since simula-
tion volumes tend to have straightforward geometries, and the load-
balancing behavior from the previous timestep can be used to extrapo-
late to the next one. Ntropy applications, on the other hand, frequently
have complex geometries (e.g. the Sloan Digital Sky Survey volume:
SDSS, http://www.sdss.org) and, being data analysis operations, have
no concept of a “time step.” Consequently, a more advanced and dy-
namic load balancing scheme was required.

Ntropy provides a facility to automatically migrate workload across
processors as the calculation progresses, and is based on the process
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Fig. 3. The effects on scaling of interprocessor data caching and dynamic load
balancing. The open squares show scaling for data caching and dynamic load
balancing, while crosses demonstrate the effects of turning off load balancing.
The open stars illustrate the further consequences of disabling the interprocessor
data cache. This scaling test is for a single spatial 3-point calculation on a fixed
problem size of 10 million particles randomly distributed in the Sloan Digital Sky
Survey volume. It was performed on the PSC Cray XT3.

virtualization concept of CHARM++. Instead of invoking a single
method instance per physical processor, the programmer can elect to
invoke many more instances than processors. Instances of work are
originally assigned to the processor that is predicted to have the most
data relevant to that task. As the calculation progresses and a proces-
sor finds that it will soon run out of work to do, it requests more from
a central workload manager. The thread with the largest remaining
workload then donates several instances of its work to the requester.
An important attribute of our work-management system is that a pro-
cessor actually predicts when it will soon run out of work and initiates
its request before this happens. The new work therefore arrives before
the current workload is exhausted, and no time is wasted waiting for
new work assignments. With a balanced workload, all threads are kept
busy throughout the computation, and the overall time to solution is
decreased. The advantage of our implementation to the programmer is
that it takes place entirely “behind the scenes” within the library itself.
Since the scientist does not have to recast their algorithm in a manner
that supports split-phase execution, Ntropy’s workload managements
system is very natural to use.

2.3.3 Performance diagnostics

Any performance-sensitive application should have diagnostic facili-
ties for measuring performance and identifying bottlenecks. Although
relatively straightforward in concept, details like timers and statis-
tics gathering can be time-consuming to write. Ntropy automatically
records timing information for each task instance that executes, as well
as for all I/O operations. Furthermore, the Ntropy API makes custom
timers available to the developer, who simply resets the timers and
turns them on and off when appropriate. All timing measurements
are then furnished upon request (to the desired level of detail) at the
agenda level. Ntropy also records detailed statistics on interprocessor
communication and cache efficacy, making it easy to determine how
much an application is being affected by communication latency.

3 RESULTS

Two fully functional applications have been written in Ntropy so far:
an n-point correlation function calculator and a “friends-of-friends”
(FOF herafter) group finder. Both applications difficult to parallelize,
but for different reasons. The development time of each one was re-
duced by roughly a factor of 10 than if they had been written “from
scratch” in MPI with similar performance: from 2 years to 3 months
for n-point and from 8 months to 3 weeks for FOF.

Ntropy was built using the RMI and data transport layers of the as-
trophysical n-body simulation code “PKDGRAV” [17]. We estimate
the time required to develop from-scratch MPI n-point and FOF ap-
plications as roughly equal to the time needed to write the same par-
allel capabilities into PKDGRAV. The assumption is that for an MPI
application to achieve the same level of performance as the Ntropy n-
point and FOF implementations, the necessary excess time would be
roughly the same amount of time it took to write the MPI portions of
PKDGRAV that are used by n-point and FOF. The development times
for the Ntropy implementations reflect how long would be needed for
somebody reasonably proficient with the Ntropy library.

3.1 N-point Correlation Functions

n-point identifies the number of n-tuples that can be constructed using
particles in the dataset subject to spatial constraints. In 2-point, for ex-
ample, one is interested in all pairs in a dataset that can be constructed
from particles separated by a distance d, dmin ≤ d ≤ dmax. In 3-point,
one seeks the number of triangles that can be made from points in the
dataset where the sides (or angles) of the triangle satisfy certain con-
figurations. There are two things that make this algorithm difficult to
parallelize efficiently. Long-range spatial searches can examine lots
of off-processor data, making it extremely latency sensitive. Further-
more, we are interested in the number of unique tuples, meaning that
we must search the particles in a particular order, making the appli-
cation difficult to load-balance. Ntropy overcomes these obstacles by
substantially reducing interprocessor messaging with its shared data
cache and by automatically balancing the workload dynamically. Fig-
ure 3 shows the fantastic scaling that Ntropy achieves. On thousands
of processors, it scales 10 times better than the naive case.1 The com-
plex geometry of observational datasets such as SDSS prevents static
load balancing strategies (which attempt to predict workload ahead of
time) from scaling well. A 3-point calculation on the SDSS, for ex-
ample, typically achieves about 50% ideal scaling on 2048 processors.
Our dynamic load balancing scheme, on the other hand, automatically
migrates work from busy processors to idle ones as the computation
progresses and attains 80% scalability for the same calculation.

3.2 Astrophysical Group Finders

In a group finder like friends-of-friends, the difficulty is tracking
groups that extend across processor domain boundaries. First, the
groups of particles are constructed by using the kd-tree for spatial
searchers. Then, the cross-processor groups are connected using an it-
erative graph-based procedure originally designed for shared-memory
machines [15]. Ntropy enables this algorithm by supporting user-
defined shared irregular data structures like graphs, effectively mim-
icking a shared-memory architecture on a distributed machine. The
shared-memory paradigm is, of course, much easier to program for,
and it offers the scientist a broader choice of algorithms. For this rea-
son, development of the group finder was substantially accelerated by
using the Ntropy library.

3.3 Serial performance

In addition to providing great parallel scalability, we found that the
Ntropy version of n-point actually ran 6 to 30 times faster than the ex-
isting widely-used serial implementation “npt” [7, 9]. This is because
Ntropy was written to be maximally efficient in serial as well. For

1Data points for the naive case are calculated from cache efficiency mea-
surements of the cache-enabled runs which track total cache accesses, cache
misses, and time penalty per cache miss.



example, Ntropy arranges the tree nodes in memory such that a full-
depth non-recursive tree walk (i.e. one that always descends the left
child first until reaching a leaf node, then proceeds laterally) would
access memory contiguously. This makes maximal use of cache and
speeds up the tree walk. Furthermore, each tree node stores pointers to
parent, children, and “next” nodes. A “next” node is the node to which
a tree walk would proceed if it did not open either child. Thus, mov-
ing from one node to another requires following only a single pointer.
Thus, by aggresively minimizing memory accesses, Ntropy optimizes
tree navigation and provides a high standard of serial performance.

4 CONCLUSION

We suspect that one reason most previous parallel development en-
vironments and tools have not achieved more widespread acceptance
in the HPC community is that each one provided a single paradigm
and forced every aspect of the application to conform to it. Our work
with Ntropy demonstrates that it is possible to take the effectual at-
tributes of several parallelization approaches and combine them into a
single facility that offers the developer a range strategies employable
when appropriate. Specifically, our library provides the ease-of-use
and scalability of agenda-based parallelism while providing as few
constraints as possible on the algorithm by using RMI concepts to
launch user-written subroutines on compute nodes. These subroutines
are then provided with a shared-memory-like view of the computation
which simplifies programming and enables many shared-memory al-
gorithms. Instead of forcing the programmer to adapt their algorithm
to a particular paradigm, Ntropy offers several paradigms each adapted
to the needs of the programmer, thereby providing an intuitive and nat-
ural solution to parallel application development.

Ntropy’s selective deployment approach and results also yield use-
ful insights into the parallelization of data trees. The single largest
problem faced by distributed tree implementations is communication
overhead. A tree walk usually traverses a broad range of data and
is largely unpredictable. If the tree is much larger than local mem-
ory, it is quite difficult to prefetch the data the walk is likely to need.
Strategies like caching are therefore necessary and prove extremely
effective at overcoming communication latency. A caching scheme
can also efficiently update remote data as well, provided that the up-
dates can be expressed in terms of a reduction. Ntropy accumulates
remote update directives locally until a cache line is flushed and sent
to the remote node that owns the updated data. Process virtualization
of divide-and-conquer schemes like tree walks can be highly effective
for load balancing so long as they are implemented on top of a data
caching mechanism. From an ease-of-programming standpoint, RMI
is useful for providing an agenda-based approach to parallelism that
still gives the programmer the necessary flexibility to implement their
tree walk in a coarse-grained fashion.

Ntropy facilitates the use of kd-trees on point-like datasets that are
much larger than the memory of a single computational node. It en-
ables the scientist to develop an application that scales to thousands
processors in much less time that it would have taken them to write a
similarly performing application with MPI. The tree implementation
is also efficient and easy to use even for serial computations. Ntropy
therefore provides a seamless “upgrade path” for the researcher allow-
ing them to run their application on any platform, from their work-
station to a massively parallel supercomputer. By minimizing devel-
opment time for efficient and scalable data analysis, Ntropy enables
wide-scale knowledge discovery on massive point-like datasets.
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