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Abstract 

By developing Radiation Hardening by Software 
(RHBSW) techniques leveraged from the High 
Performance Computing community, the A-OPSS project 
seeks to deliver radiation tolerant, high performance 
System on a Chip (SoC) processors. This SoC 
architecture is uniquely suited to both handle high 
performance signal processing tasks, as well as 
autonomous agent processing. This allows situational 
awareness to be developed in-situ, resulting in a 10-100x 
decrease in processing latency, which directly translates 
into more science experiments conducted per day and a 
more thorough, timely analysis of captured data.  
This paper focuses on the second year’s efforts which 
revolve around developing a fault emulator for the 
embedded PowerPC within Xilinx V4FX devices, 
validating the RHBSW techniques developed in the prior 
year, and projecting performance results on a 
representative autonomous Hyperspectral application. 
 

1. Introduction 
Over the past decade, the physics of CMOS at advanced 
process node feature sizes has entered a trade space where 
total ionizing dose (TID) is no longer much of a concern 
for modern devices in relatively low radiation 
environments such as Low Earth Orbit (LEO), however 
Singe Event Upsets (SEUs) have become more prevalent.  
Researchers have focused on both hardware and software 
techniques to mitigate radiation effects in SRAM-based 
Field Programmable Gate Arrays in order to address 
SEUs and make these devices radiation tolerant. This has 
proved to be a boon to the space community as these 
processors can deliver processing performance several 
generations ahead of traditional radiation hardened by 
process devices, such as anti-fuse FPGAs.  
 
As technology has progressed, FPGAs have evolved from 
homogeneous sea of gates architectures, to heterogeneous 
system on a chip architectures containing multipliers, 
multi-gigabit transceivers, Ethernet cores, and even 
embedded PowerPC processors. The embedded PowerPC 
is especially attractive in that the traditional Radiation 
Hardening by Process (RHBP) community’s development 
of RISC processors has traditionally has lagged the 
commercial market by 2-3 Moore’s Law generations. 
Furthermore, the exponential cost trend of RHBP has 

stalled the release of a radiation hardened RISC processor 
for several years. As table 1 shows, the small embedded 
PowerPCs within an FPGA device can now yield several 
times more performance than the latest RHBP RISC 
processor. It should also be noted that the performance 
characteristics listed are for a single PowerPC core, and 
the FPGA devices often contain two cores per device. 
 

Table 1 Performance Comparison of Space Processors 

Processor Mitigation 
Technique 

Dhrystone MIPS 

RAD600 RHBP 35 
RAD750 RHBP 266 
LEON3FT RHBP 560 
PowerPC 405 RHBSW 900 
PowerPC 440 RHBSW 1300 
 
The embedded PowerPC in particular adds significant 
benefit to the space community as now scientists, who 
may not be VHDL experts, have an easy migration path 
for their existing C programs to an embedded space 
platform. This enables a rapid application development 
cycle where core functionality is quickly achieved and 
then code migration to the FPGA fabric is performed 
gradually, targeting performance-critical functions.  This 
development cycle is especially attractive to the space 
community as it allows a low-risk spiral development 
path that yields higher performance. Furthermore, a 
modern RISC processor enables autonomous applications 
as its architecture is better suited to handle the branching 
type operations common in artificial intelligence agents 
and the higher processing bandwidth is better suited to 
tackle real world complexities. It is also easy to build 
embedded space platforms with several PowerPCs and 
scale performance as 2 PowerPCs are available in a single 
FPGA, and most current space hardware contains several 
FPGAs.  
 
The downside however is that the embedded PowerPCs 
are susceptible to SEUs and new fault mitigation 
techniques must be developed in order to make use of 
these attractive features. Traditional FPGA fault tolerance 
strategies can detect and correct errors within the FPGA’s 
bitstream [1,2]; however, the bitstream does not contain 
the state of the embedded PowerPC cores, and 
consequently, errors within the PowerPC cannot be 
scrubbed. Additionally, there are two, not three, 



PowerPCs per FPGA, so traditional Triple Modular 
Redundancy (TMR) techniques are awkward to apply.  
 
In this paper we describe our recent progress on 
developing software-based fault tolerance strategies for 
PowerPC devices embedded within Xilinx Virtex 4 FX60 
FPGAs.  We provide a brief overview of our techniques, 
the fault emulator we developed, the results of our initial 
test campaign, and our progress in developing an 
autonomous Hyperspectral imaging application using A-
OPSS technology. 
 
 

2. Radiation Hardening by Software 
Our work targets scientific applications operating on 
traditional space-based FPGA board-level architectures 
consisting of an FPGA and a radiation-hardened 
controller. These applications are more tolerant to data 
upsets and, to a limited extent, may trade reliability for 
increased performance in space. To that end, our 
primarily goal is to detect and correct control flow and 
other catastrophic errors that would otherwise hang or 
crash the embedded PowerPCs.  We ignore small data 
errors that can be corrected in post-processing on the 
ground.  We use heartbeat monitoring, control flow 
assertions, and watchdog timers to detect errors.  To 
mitigate the detected errors, we implement a user-level 
checkpoint and rollback library. The goal of these 
techniques is to provide a flexible, low overhead approach 
as compared to TMR. 
 
All of these techniques are designed to complement one 
another and to work in conjunction with a radiation-
hardened controller.   Heartbeats allow the radiation-
hardened controller to monitor coarse-grained execution 
and status messages.  Control flow assertions and 
watchdog timers are used by the executing PowerPC to 
ensure that execution continues in a predictable manner 
without skipping or repeating major code segments and to 
ensure that computational progress is being made.  Finally, 
checkpointing and rollback are used by the executing 
PowerPC to periodically capture its state of execution.  If 
a fault is found, the PowerPC may roll back to the most 
recent checkpoint before continuing computation.   The 
ability of a PowerPC to restart from its most recent 
checkpoint avoids unnecessary wasted computation. For a 
more detailed description of the RHBSW fault tolerant 
techniques, please refer to [3, 4] 
 

3. The Memory Sentinel and Injection 
System (MSIS) 
 
Validating our RHBSW techniques requires robust testing 
using progressively more realistic test conditions: 
software emulation, radiation testing, and in-situ testing. 

While each of these steps provides increasing realism, the 
trade-off is that each step is also exponentially more 
costly and time consuming. So having a quick, realistic 
software injector is critical to refining early RHBSW 
approaches and making more efficient use of costly, 
sparse testing environments. While several groups have 
developed fault emulators for the FPGA fabric, the 
research community has made little progress on fault 
emulators for the embedded PowerPC. The most 
significant being the Simple Portable Fault Injector – PPC 
(SPFI-PPC). While the SPFI-PPC is a good first step, it 
lacks coverage of the caches and relies on GDB-based 
corruption over a JTAG communication interface, which 
in practice proved unreliable beyond tens of injections. 
 Due to these limitations, we developed a custom 
hardware/software-based fault injector named the 
Memory Sentinel and Injection System (MSIS) [5]. MSIS 
is a fault injector for the PowerPCs 405(s) in Xilinx 
Virtex-II Pro and Virtex-4 FX FPGAs which emulate 
faults by flipping bits on the executing hardware. The 
MSIS introduces software faults to an application by 
flipping bits in the processor general-purpose registers, 
special purpose registers, or the instruction or data caches. 

When a fault is injected, its details are logged so post-
injection analysis can be performed to determine the 
cause of a failure. 
 

Table 2: PowerPC 405 Sensitive Bits 

Feature Size 

ICache 16KB+1408B tag + 64 
control bits 

DCache 16KB+1408B tag + 64 
control bits 

General Purpose 
Registers 

32x32 bits 

Special Purpose 
Registers 

32x32 bits 

Execution Pipeline 10x32 bits 

ALU/MAC 1200 bits 

Timers 3x64 bits 

MMU 72x68 bits 

Misc 1024 bits 

Total 292,820 bits 

 



The MSIS uses a split software/hardware implementation.  
The hardware components, termed HW-MSIS in Figure 1, 
is responsible for generating injection interrupts as well as 
modifying cache contents through using monitor ring.  
The software component, referred to as SW-MSIS, is 
responsible for modifying register contents, cache line 
flushing/invalidation, and logging. A more detailed 
description of the MSIS design and capabilities can be 
found at [6]. 
 
The key benefit of this fault injection approach is that this 
is the only known method of injecting faults into the 
caches. As we show in Table 2, the instruction and data 
caches together account for more than 95% of the 405's 
sensitive bits.  Understanding cache fault behavior is 
crucial as the PowerPC 405's cache parity circuit as 
implemented within Xilinx FPGAs contains a known 
hardware error that prevents its use [7].  Without the 
parity circuit enabled, the PowerPC 405 does not 
automatically correct cache parity errors resulting from 
SEUs and other techniques must be developed.   
 

3.1. MSIS Test Application and Evaluation 
 
In order to evaluate the MSIS, we developed a synthetic 
test application modeled after a pair of space-based 
scientific applications. The application is composed of 
computational kernels from both hyperspectral and 
synthetic aperture radar (SAR) imaging. From 
hyperspectral we borrow a representative thresholding 
kernel, and from SAR we borrow the complex multiply 
and FFT kernels. Data sizes are kept small (size 128 
FFTs) in order to execute entirely in block RAM, yet will 
still turn over cache contents. The small data sizes aid in 
making the results easier to analyze but is not a 
requirement of the MSIS. All general-purpose registers 
are used within the test application as are both caches. 
Most special purpose registers are not referenced directly 
within the application. However, manipulating the SPRs 
at runtime often results in undesirable side effects. For 
example, disabling/enabling cacheable regions, debug 
modes, and interrupts. No operating system was used in 
our tests.  
 
The application repeatedly performs 1-dimensional FFTs 
and complex multiplication followed by thresholding in 
order to mimic both hyperspectral and SAR imaging. At 
system startup a golden output is calculated that is used to 
verify results during the injection campaign. A backup of 
the golden output is also maintained in order to ensure the 
accuracy of the golden output throughout the injection 
campaign. If at any time a data error is found (either the 
golden outputs or a computed result), the PowerPC logs 
the error to the UART, resets itself, re-computes golden 
outputs, and continues the injection campaign. 

 
At startup, the application completes a calibration phase 
where an average execution time is derived. The 
execution time is used by the MSIS to provide an upper 
bound on the execution during which the MSIS may 
inject an error. After calibration, the application enters the 
injection phase, which consists of the algorithm 
repeatedly executing and validating within an infinite 
loop. The SW-MSIS interrupts the processor and injects 
an error into the test at a random clock cycle within the 
bounds of the execution time derived during the 
calibration stage. At the end of each trial, the PowerPC 
under test writes the test results to the UART, which is 
logged to a local file system. 
 
 
 

3.2. Injection Results 
 
True injection campaigns require a statistically significant 
number of injections, however even basic embedded 
programs contain 100’s KBs of instructions, operating on 
100’s of MBs of data in just a few seconds, making the 
number of injections required for statistical stability 
extremely large. Running these experiments will take 
quite some time and we will release increasingly larger 
sets of data over the course of the project. 
 
In this paper, we present two initial injection campaigns 
designed to confirm that the PowerPC 405 behaves as 
expected, given bit error injections and that our fault 
tolerance approaches hold to first order. We cannot 
predict the behavior of an arbitrary injection - indeed 
many injections will simply not propagate to the 
application level. Some injections, however, are quite 
predictable. For example, manipulating the stack pointer 
or program counter are extremely likely to put the 
processor into an undefined state (i.e. hang the processor). 
Other injections, such as cache injections, are far more 
subtle and depend on program execution – whether the 

 
Figure 1: The MSIS architecture, showing SW-MSIS, HW-

MSIS and monitor ring. 



cache values were consumed or simply evicted, for 
example. 
 
Our initial test campaign consists of 3,000 baseline 
injections without RHBSW (Table 3) and 3,000 injections 
with RHBSW techniques added (Table 4). In these tables 
fault injection data is categorized into several categories. 
Good Data (no action) means that the fault injected had 
no effect on the resulting data test vector. Good Data 
(rollback) means that a fault was injected which was 
successfully detected and by performing a rollback 
operation the correct result was obtained. A Data Error 
condition means the program completed execution, 
however after injection computed an incorrect result. 
Reset indicates that the processor was hung. In the 
baseline testing the processor needed to be reset 
completely, with RHBSW techniques, the radiation 
hardened controller is able to reset the PowerPC and 
restart it at the last known valid checkpoint. 

 
 Here, we can see that roughly 85% of all faults have no 
effect on the program execution. This is due to not only a 
significant number of don’t care bits being flipped, but 
also due to the temporal sensitivity of data in a processor 
in that data or instructions already executed being 
corrupted will have no effect on the result. With no 
protection, 9% of injections will produce a hard fault and 
need to reset the processor, while 5% of the errors will 
produce a soft failure resulting in data corruption. Our 
initial RHBSW techniques have a dramatic impact. First, 
there is no hard failure condition any more as the 
radiation hardened controller can reset and rollback what 
would normally be a hung processor. Additionally, the 
number of injections that result in this potential condition 
is dropped to only 2% of the time. Another strong benefit 
is that 4% of injections that would normally have 
produced a data error, are now caught and mitigated. As a 
result of our RHBSW techniques, only 4% of injections 
result in a data error. While in percentage terms this is an 
increase from 86% to 96% chance of producing the 
correct result, this represents over an order of magnitude 
increase in Mean Time Between Data Error (MTBDE). 

While these injections do not represent a comprehensive 
evaluation of the PowerPC 405 and the fault tolerant 
techniques, for example, we cannot target the execution 
pipelines or any external buses, they do align well with 
our expectations of the processor given the injections 
observed and are promising for future investigation. 
Under the remainder of the project, we will collect and 
correlate data across software emulation, radiation testing, 
and in space test results. Collection is underway for orders 
of magnitude more software injection fault data. Laser 
injection test campaigns are scheduled. Most importantly, 
A-OPSS software has recently been uploaded onto a 
SpaceCube 1.0 processor card on board the International 
Space Station as part of the MISSE-7 experiment and 
results are currently being collected. Final fault mitigation 
analysis will seek to correlate across these three 
experiments. 
 

Table 3: Summary Baseline Injection Results 

Result Percent 

Good Data (no action) 86% 

Good Data (Rollback) 0% 

Data Error (no action) 5% 

Data Error (rollback) 0% 

Reset	 9% 

Table 4: Summary Fault Tolerant 
Injection Results 

Result Percent 

Good Data (no action) 85% 

Good Data (Rollback) 9% 

Data Error (no action) 4% 

Data Error (rollback) 0% 

Reset and Rollback 2% 



 
 

4. Autonomous Onboard Processing 
 
With an increase in the amount of computational 
throughput made possible by commodity high 
performance processors and low overhead fault tolerance, 
new applications can be considered for on-board 
processing. Our final thrust is to demonstrate the 
performance increase yielded and applications enabled by 
A-OPSS RHBSW techniques. To demonstrate the kinds 
of capabilities the A-OPSS fault tolerance approaches 
yield, the team focused on applications representative of 
the Decadal Survey HyspIRI mission, which uses high 
throughput Thermal Infrared Scanner (132 Mbps) and 
Hyperspectral Visibe ShortWave InfraRed (804 Mbps) 
instruments, while having only a 15 Mbps downlink 
channel. This mission provides a great many use 
scenarios for onboard processing, from high compression 

algorithms, to pre-processing and selective download of 
high priority images, to full on-board classification. 
 
We have created a framework for an autonomous system 
which integrates all classifier types and based on pre-
assigned priorities, performs look ahead computations to 
determine if an urgent event is detected, i.e. fires, 
prioritizes that image for downlink, and sends only the 
relevant pixels of data, as opposed to the entire 
hyperspectral data cube. The framework can be seen in 
Figure 2. Here, we take in the input data and perform a 
quick classification to autonomously detect if this is a 
land or ocean image. Based on the coarse classifier the 
appropriate atmospheric correction algorithm is used. An 
example of the input and output of atmospheric correction 
can be seen in Figure 3. After the data is properly 
calibrated, several classifiers can be run in parallel, and 
based on the classifiers, selects only the relevant pixels of 
the hyperspectral data cube for downlink. 
 

Figure 2: Hyperspectral imaging autonomous framework. 

Figure 3: Hyperspectral image before and after atmospheric correction. 



To date, this application is running end to end on a 
generic desktop computer. It is demonstrating autonomy 
by being able to analyze its own sensed data and make 
simple determinations such as determining land vs ocean, 
the correct type of classifiers to utilize, and to selectively 
downlink image regions of interest. Portions of the system 
have been ported to the PowerPC within the FPGA 
hardware. While this is an important step, further 
refinement will occur over the upcoming year in moving 
some of the computations to the FPGA fabric where much 
higher degrees of parallelism can be realized, further 
increasing system throughput.  
 
In Figure 4 and Figure 5 we depict our proposed initial 
and final hardware implementations.  In our initial 
implementation we will leverage the PowerPCs to 
perform classification with up to two concurrent 
classifiers.  This design assumes pre-corrected imagery 
and allows us to provide a proof of concept for our 
autonomous work.  It does not include our fault tolerance 
routines. 
 
The final implementation, shown in Figure 5, includes 
support for atmospheric correction parallelized within the 
FPGA fabric.  Rather than using the PowerPCs for 
classification, they are repurposed for autonomous 
operations.  The classifiers (e.g. thermal, sulfur, etc.) will 
also be implemented in the fabric.  Not only does this 
design effectively leverage many aspects of the FPGA, 

but it allows for high performance correction and 
classification by leveraging the strengths of the FPGA as 
a stream processing architecture. Initial study of a variety 
of classifiers has revealed that these are extremely well 
suited to residing in the FPGA fabric as they typically 
consist of only a handful of simple algebraic operations 
and the hyperspectral image lends itself to highly data 
parallelizable solutions. Depending upon FPGA size and 
utilization, an efficient FPGA-based implementation of a 
hyperspectral classifier could hold 100’s of classifiers in 
parallel. Our final implementation will also include our 
fault tolerance layer, providing software-based fault 
tolerance to the PowerPCs and coordinating fault 
tolerance with the FPGA fabric, to show full expected 
performance results.  
 

5. Summary 
 

A high performance and low overhead fault tolerance 
strategy targeting scientific applications on the 
SpaceCube 1.0 platform has been enhanced with initial 
results showing an order of magnitude increase in Mean 
Time Between Data Error and a complete elimination of 
processor hangs. Initial study of representative 
hyperspectral applications also proves promising due to 
high levels of data parallelism and fine grained 
parallelism acehivable within FPGA System on a Chip 
architectures enabled by A-OPSS RHBSW techniques. In 
the upcoming year, fault analysis data will be refined and 

 

Figure 4: Basic, rapid hyperspectral mapping to 
SpaceCube. 

Figure 5: High performance hyperspectral mapping to 
SpaceCube. 



correlated between software fault emulation, laser testing, 
and space based results. The project will also deliver 
expected performance results on an optimized, 
representative hyperspectral imaging application 
demonstrating autonomous operations. 
 

6. References 
                                                           
1 http://www.xilinx.com/esp/aero_def/see.htm 
2 Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and 
Michael J. Wirthlin, “Improving FPGA Design Robustness with 
Partial TMR”, IEEE International Reliability Physics 
Symposium (IRPS) pp. 226-232, April 2006. 
3 M. French, J. Walters, M. Bucciero, “Autonomous On-board 
Processing for Sensor Systems: High Performance Fault 
Tolerance Techniques,” NASA Earth Science Technology 
Forum, Crystal City, VA, June 2010. 
4 M. Bucciero, J. Walters, M. French, “Radiation Hardening by 
Software for the Embedded PowerPC,” IEEE Aerospace, Big 
Sky Montana, February 2011. 
5 M. Bucciero, J. P. Walters, R. Moussalli, S. Gao, M. French, 
“The PowerPC 405 Memory Sentinel and Injection System,” 
IEEE conference on Field Customizable Computing Machines, 
May, 2011. 
6  M. Bucciero, J. Walters, M. French, "The PowerPC 405 
Memory Sentinel and Injection System," IEEE Symposium on 
Field Customizeable Computing Machines, Salt Lake City, UT, 
May, 2011 
7  Xilinx Virtex-4 PowerPC 405 Errata, 
http://www.xilinx.com/support/answers/20658.htm, 2011. 


