
Autonomous On-board Processing for Sensor Systems:
Initial Fault Tolerance and Autonomy Results

Matthew French, John Paul Walters, Kenneth Zick
University of Southern California, Information Sciences Institute

3811 N. Fairfax Dr., Suite 200, Arlington, VA 22203
{mfrench, jwalters, kzick}@isi.edu

Abstract

By developing Radiation Hardening by Software
(RHBSW) techniques leveraged from the High
Performance Computing community, the A-OPSS project
seeks to deliver radiation tolerant, high performance
System on a Chip (SoC) processors. This SoC
architecture is uniquely suited to both handle high
performance signal processing tasks, as well as
autonomous agent processing. This allows situational
awareness to be developed in-situ, resulting in a 10-100x
decrease in processing latency, which directly translates
into more science experiments conducted per day and a
more thorough, timely analysis of captured data.
This paper focuses on the second year’s efforts which
revolve around developing a fault emulator for the
embedded PowerPC within Xilinx V4FX devices,
validating the RHBSW techniques developed in the prior
year, and projecting performance results on a
representative autonomous Hyperspectral application.

1. Introduction
Over the past decade, the physics of CMOS at advanced
process node feature sizes has entered a trade space where
total ionizing dose (TID) is no longer much of a concern
for modern devices in relatively low radiation
environments such as Low Earth Orbit (LEO), however
Singe Event Upsets (SEUs) have become more prevalent.
Researchers have focused on both hardware and software
techniques to mitigate radiation effects in SRAM-based
Field Programmable Gate Arrays in order to address
SEUs and make these devices radiation tolerant. This has
proved to be a boon to the space community as these
processors can deliver processing performance several
generations ahead of traditional radiation hardened by
process devices, such as anti-fuse FPGAs.

As technology has progressed, FPGAs have evolved from
homogeneous sea of gates architectures, to heterogeneous
system on a chip architectures containing multipliers,
multi-gigabit transceivers, Ethernet cores, and even
embedded PowerPC processors. The embedded PowerPC
is especially attractive in that the traditional Radiation
Hardening by Process (RHBP) community’s development
of RISC processors has traditionally has lagged the
commercial market by 2-3 Moore’s Law generations.
Furthermore, the exponential cost trend of RHBP has

stalled the release of a radiation hardened RISC processor
for several years. As table 1 shows, the small embedded
PowerPCs within an FPGA device can now yield several
times more performance than the latest RHBP RISC
processor. It should also be noted that the performance
characteristics listed are for a single PowerPC core, and
the FPGA devices often contain two cores per device.

Table 1 Performance Comparison of Space Processors

Processor Mitigation
Technique

Dhrystone MIPS

RAD600 RHBP 35
RAD750 RHBP 266
LEON3FT RHBP 560
PowerPC 405 RHBSW 900
PowerPC 440 RHBSW 1300

The embedded PowerPC in particular adds significant
benefit to the space community as now scientists, who
may not be VHDL experts, have an easy migration path
for their existing C programs to an embedded space
platform. This enables a rapid application development
cycle where core functionality is quickly achieved and
then code migration to the FPGA fabric is performed
gradually, targeting performance-critical functions. This
development cycle is especially attractive to the space
community as it allows a low-risk spiral development
path that yields higher performance. Furthermore, a
modern RISC processor enables autonomous applications
as its architecture is better suited to handle the branching
type operations common in artificial intelligence agents
and the higher processing bandwidth is better suited to
tackle real world complexities. It is also easy to build
embedded space platforms with several PowerPCs and
scale performance as 2 PowerPCs are available in a single
FPGA, and most current space hardware contains several
FPGAs.

The downside however is that the embedded PowerPCs
are susceptible to SEUs and new fault mitigation
techniques must be developed in order to make use of
these attractive features. Traditional FPGA fault tolerance
strategies can detect and correct errors within the FPGA’s
bitstream [1,2]; however, the bitstream does not contain
the state of the embedded PowerPC cores, and
consequently, errors within the PowerPC cannot be
scrubbed. Additionally, there are two, not three,

PowerPCs per FPGA, so traditional Triple Modular
Redundancy (TMR) techniques are awkward to apply.

In this paper we describe our recent progress on
developing software-based fault tolerance strategies for
PowerPC devices embedded within Xilinx Virtex 4 FX60
FPGAs. We provide a brief overview of our techniques,
the fault emulator we developed, the results of our initial
test campaign, and our progress in developing an
autonomous Hyperspectral imaging application using A-
OPSS technology.

2. Radiation Hardening by Software
Our work targets scientific applications operating on
traditional space-based FPGA board-level architectures
consisting of an FPGA and a radiation-hardened
controller. These applications are more tolerant to data
upsets and, to a limited extent, may trade reliability for
increased performance in space. To that end, our
primarily goal is to detect and correct control flow and
other catastrophic errors that would otherwise hang or
crash the embedded PowerPCs. We ignore small data
errors that can be corrected in post-processing on the
ground. We use heartbeat monitoring, control flow
assertions, and watchdog timers to detect errors. To
mitigate the detected errors, we implement a user-level
checkpoint and rollback library. The goal of these
techniques is to provide a flexible, low overhead approach
as compared to TMR.

All of these techniques are designed to complement one
another and to work in conjunction with a radiation-
hardened controller. Heartbeats allow the radiation-
hardened controller to monitor coarse-grained execution
and status messages. Control flow assertions and
watchdog timers are used by the executing PowerPC to
ensure that execution continues in a predictable manner
without skipping or repeating major code segments and to
ensure that computational progress is being made. Finally,
checkpointing and rollback are used by the executing
PowerPC to periodically capture its state of execution. If
a fault is found, the PowerPC may roll back to the most
recent checkpoint before continuing computation. The
ability of a PowerPC to restart from its most recent
checkpoint avoids unnecessary wasted computation. For a
more detailed description of the RHBSW fault tolerant
techniques, please refer to [3, 4]

3. The Memory Sentinel and Injection
System (MSIS)

Validating our RHBSW techniques requires robust testing
using progressively more realistic test conditions:
software emulation, radiation testing, and in-situ testing.

While each of these steps provides increasing realism, the
trade-off is that each step is also exponentially more
costly and time consuming. So having a quick, realistic
software injector is critical to refining early RHBSW
approaches and making more efficient use of costly,
sparse testing environments. While several groups have
developed fault emulators for the FPGA fabric, the
research community has made little progress on fault
emulators for the embedded PowerPC. The most
significant being the Simple Portable Fault Injector – PPC
(SPFI-PPC). While the SPFI-PPC is a good first step, it
lacks coverage of the caches and relies on GDB-based
corruption over a JTAG communication interface, which
in practice proved unreliable beyond tens of injections.
 Due to these limitations, we developed a custom
hardware/software-based fault injector named the
Memory Sentinel and Injection System (MSIS) [5]. MSIS
is a fault injector for the PowerPCs 405(s) in Xilinx
Virtex-II Pro and Virtex-4 FX FPGAs which emulate
faults by flipping bits on the executing hardware. The
MSIS introduces software faults to an application by
flipping bits in the processor general-purpose registers,
special purpose registers, or the instruction or data caches.

When a fault is injected, its details are logged so post-
injection analysis can be performed to determine the
cause of a failure.

Table 2: PowerPC 405 Sensitive Bits

Feature Size

ICache 16KB+1408B tag + 64
control bits

DCache 16KB+1408B tag + 64
control bits

General Purpose
Registers

32x32 bits

Special Purpose
Registers

32x32 bits

Execution Pipeline 10x32 bits

ALU/MAC 1200 bits

Timers 3x64 bits

MMU 72x68 bits

Misc 1024 bits

Total 292,820 bits

The MSIS uses a split software/hardware implementation.
The hardware components, termed HW-MSIS in Figure 1,
is responsible for generating injection interrupts as well as
modifying cache contents through using monitor ring.
The software component, referred to as SW-MSIS, is
responsible for modifying register contents, cache line
flushing/invalidation, and logging. A more detailed
description of the MSIS design and capabilities can be
found at [6].

The key benefit of this fault injection approach is that this
is the only known method of injecting faults into the
caches. As we show in Table 2, the instruction and data
caches together account for more than 95% of the 405's
sensitive bits. Understanding cache fault behavior is
crucial as the PowerPC 405's cache parity circuit as
implemented within Xilinx FPGAs contains a known
hardware error that prevents its use [7]. Without the
parity circuit enabled, the PowerPC 405 does not
automatically correct cache parity errors resulting from
SEUs and other techniques must be developed.

3.1. MSIS Test Application and Evaluation

In order to evaluate the MSIS, we developed a synthetic
test application modeled after a pair of space-based
scientific applications. The application is composed of
computational kernels from both hyperspectral and
synthetic aperture radar (SAR) imaging. From
hyperspectral we borrow a representative thresholding
kernel, and from SAR we borrow the complex multiply
and FFT kernels. Data sizes are kept small (size 128
FFTs) in order to execute entirely in block RAM, yet will
still turn over cache contents. The small data sizes aid in
making the results easier to analyze but is not a
requirement of the MSIS. All general-purpose registers
are used within the test application as are both caches.
Most special purpose registers are not referenced directly
within the application. However, manipulating the SPRs
at runtime often results in undesirable side effects. For
example, disabling/enabling cacheable regions, debug
modes, and interrupts. No operating system was used in
our tests.

The application repeatedly performs 1-dimensional FFTs
and complex multiplication followed by thresholding in
order to mimic both hyperspectral and SAR imaging. At
system startup a golden output is calculated that is used to
verify results during the injection campaign. A backup of
the golden output is also maintained in order to ensure the
accuracy of the golden output throughout the injection
campaign. If at any time a data error is found (either the
golden outputs or a computed result), the PowerPC logs
the error to the UART, resets itself, re-computes golden
outputs, and continues the injection campaign.

At startup, the application completes a calibration phase
where an average execution time is derived. The
execution time is used by the MSIS to provide an upper
bound on the execution during which the MSIS may
inject an error. After calibration, the application enters the
injection phase, which consists of the algorithm
repeatedly executing and validating within an infinite
loop. The SW-MSIS interrupts the processor and injects
an error into the test at a random clock cycle within the
bounds of the execution time derived during the
calibration stage. At the end of each trial, the PowerPC
under test writes the test results to the UART, which is
logged to a local file system.

3.2. Injection Results

True injection campaigns require a statistically significant
number of injections, however even basic embedded
programs contain 100’s KBs of instructions, operating on
100’s of MBs of data in just a few seconds, making the
number of injections required for statistical stability
extremely large. Running these experiments will take
quite some time and we will release increasingly larger
sets of data over the course of the project.

In this paper, we present two initial injection campaigns
designed to confirm that the PowerPC 405 behaves as
expected, given bit error injections and that our fault
tolerance approaches hold to first order. We cannot
predict the behavior of an arbitrary injection - indeed
many injections will simply not propagate to the
application level. Some injections, however, are quite
predictable. For example, manipulating the stack pointer
or program counter are extremely likely to put the
processor into an undefined state (i.e. hang the processor).
Other injections, such as cache injections, are far more
subtle and depend on program execution – whether the

Figure 1: The MSIS architecture, showing SW-MSIS, HW-

MSIS and monitor ring.

cache values were consumed or simply evicted, for
example.

Our initial test campaign consists of 3,000 baseline
injections without RHBSW (Table 3) and 3,000 injections
with RHBSW techniques added (Table 4). In these tables
fault injection data is categorized into several categories.
Good Data (no action) means that the fault injected had
no effect on the resulting data test vector. Good Data
(rollback) means that a fault was injected which was
successfully detected and by performing a rollback
operation the correct result was obtained. A Data Error
condition means the program completed execution,
however after injection computed an incorrect result.
Reset indicates that the processor was hung. In the
baseline testing the processor needed to be reset
completely, with RHBSW techniques, the radiation
hardened controller is able to reset the PowerPC and
restart it at the last known valid checkpoint.

 Here, we can see that roughly 85% of all faults have no
effect on the program execution. This is due to not only a
significant number of don’t care bits being flipped, but
also due to the temporal sensitivity of data in a processor
in that data or instructions already executed being
corrupted will have no effect on the result. With no
protection, 9% of injections will produce a hard fault and
need to reset the processor, while 5% of the errors will
produce a soft failure resulting in data corruption. Our
initial RHBSW techniques have a dramatic impact. First,
there is no hard failure condition any more as the
radiation hardened controller can reset and rollback what
would normally be a hung processor. Additionally, the
number of injections that result in this potential condition
is dropped to only 2% of the time. Another strong benefit
is that 4% of injections that would normally have
produced a data error, are now caught and mitigated. As a
result of our RHBSW techniques, only 4% of injections
result in a data error. While in percentage terms this is an
increase from 86% to 96% chance of producing the
correct result, this represents over an order of magnitude
increase in Mean Time Between Data Error (MTBDE).

While these injections do not represent a comprehensive
evaluation of the PowerPC 405 and the fault tolerant
techniques, for example, we cannot target the execution
pipelines or any external buses, they do align well with
our expectations of the processor given the injections
observed and are promising for future investigation.
Under the remainder of the project, we will collect and
correlate data across software emulation, radiation testing,
and in space test results. Collection is underway for orders
of magnitude more software injection fault data. Laser
injection test campaigns are scheduled. Most importantly,
A-OPSS software has recently been uploaded onto a
SpaceCube 1.0 processor card on board the International
Space Station as part of the MISSE-7 experiment and
results are currently being collected. Final fault mitigation
analysis will seek to correlate across these three
experiments.

Table 3: Summary Baseline Injection Results

Result Percent

Good Data (no action) 86%

Good Data (Rollback) 0%

Data Error (no action) 5%

Data Error (rollback) 0%

Reset	 9%

Table 4: Summary Fault Tolerant
Injection Results

Result Percent

Good Data (no action) 85%

Good Data (Rollback) 9%

Data Error (no action) 4%

Data Error (rollback) 0%

Reset and Rollback 2%

4. Autonomous Onboard Processing

With an increase in the amount of computational
throughput made possible by commodity high
performance processors and low overhead fault tolerance,
new applications can be considered for on-board
processing. Our final thrust is to demonstrate the
performance increase yielded and applications enabled by
A-OPSS RHBSW techniques. To demonstrate the kinds
of capabilities the A-OPSS fault tolerance approaches
yield, the team focused on applications representative of
the Decadal Survey HyspIRI mission, which uses high
throughput Thermal Infrared Scanner (132 Mbps) and
Hyperspectral Visibe ShortWave InfraRed (804 Mbps)
instruments, while having only a 15 Mbps downlink
channel. This mission provides a great many use
scenarios for onboard processing, from high compression

algorithms, to pre-processing and selective download of
high priority images, to full on-board classification.

We have created a framework for an autonomous system
which integrates all classifier types and based on pre-
assigned priorities, performs look ahead computations to
determine if an urgent event is detected, i.e. fires,
prioritizes that image for downlink, and sends only the
relevant pixels of data, as opposed to the entire
hyperspectral data cube. The framework can be seen in
Figure 2. Here, we take in the input data and perform a
quick classification to autonomously detect if this is a
land or ocean image. Based on the coarse classifier the
appropriate atmospheric correction algorithm is used. An
example of the input and output of atmospheric correction
can be seen in Figure 3. After the data is properly
calibrated, several classifiers can be run in parallel, and
based on the classifiers, selects only the relevant pixels of
the hyperspectral data cube for downlink.

Figure 2: Hyperspectral imaging autonomous framework.

Figure 3: Hyperspectral image before and after atmospheric correction.

To date, this application is running end to end on a
generic desktop computer. It is demonstrating autonomy
by being able to analyze its own sensed data and make
simple determinations such as determining land vs ocean,
the correct type of classifiers to utilize, and to selectively
downlink image regions of interest. Portions of the system
have been ported to the PowerPC within the FPGA
hardware. While this is an important step, further
refinement will occur over the upcoming year in moving
some of the computations to the FPGA fabric where much
higher degrees of parallelism can be realized, further
increasing system throughput.

In Figure 4 and Figure 5 we depict our proposed initial
and final hardware implementations. In our initial
implementation we will leverage the PowerPCs to
perform classification with up to two concurrent
classifiers. This design assumes pre-corrected imagery
and allows us to provide a proof of concept for our
autonomous work. It does not include our fault tolerance
routines.

The final implementation, shown in Figure 5, includes
support for atmospheric correction parallelized within the
FPGA fabric. Rather than using the PowerPCs for
classification, they are repurposed for autonomous
operations. The classifiers (e.g. thermal, sulfur, etc.) will
also be implemented in the fabric. Not only does this
design effectively leverage many aspects of the FPGA,

but it allows for high performance correction and
classification by leveraging the strengths of the FPGA as
a stream processing architecture. Initial study of a variety
of classifiers has revealed that these are extremely well
suited to residing in the FPGA fabric as they typically
consist of only a handful of simple algebraic operations
and the hyperspectral image lends itself to highly data
parallelizable solutions. Depending upon FPGA size and
utilization, an efficient FPGA-based implementation of a
hyperspectral classifier could hold 100’s of classifiers in
parallel. Our final implementation will also include our
fault tolerance layer, providing software-based fault
tolerance to the PowerPCs and coordinating fault
tolerance with the FPGA fabric, to show full expected
performance results.

5. Summary

A high performance and low overhead fault tolerance
strategy targeting scientific applications on the
SpaceCube 1.0 platform has been enhanced with initial
results showing an order of magnitude increase in Mean
Time Between Data Error and a complete elimination of
processor hangs. Initial study of representative
hyperspectral applications also proves promising due to
high levels of data parallelism and fine grained
parallelism acehivable within FPGA System on a Chip
architectures enabled by A-OPSS RHBSW techniques. In
the upcoming year, fault analysis data will be refined and

Figure 4: Basic, rapid hyperspectral mapping to
SpaceCube.

Figure 5: High performance hyperspectral mapping to
SpaceCube.

correlated between software fault emulation, laser testing,
and space based results. The project will also deliver
expected performance results on an optimized,
representative hyperspectral imaging application
demonstrating autonomous operations.

6. References

1 http://www.xilinx.com/esp/aero_def/see.htm
2 Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and
Michael J. Wirthlin, “Improving FPGA Design Robustness with
Partial TMR”, IEEE International Reliability Physics
Symposium (IRPS) pp. 226-232, April 2006.
3 M. French, J. Walters, M. Bucciero, “Autonomous On-board
Processing for Sensor Systems: High Performance Fault
Tolerance Techniques,” NASA Earth Science Technology
Forum, Crystal City, VA, June 2010.
4 M. Bucciero, J. Walters, M. French, “Radiation Hardening by
Software for the Embedded PowerPC,” IEEE Aerospace, Big
Sky Montana, February 2011.
5 M. Bucciero, J. P. Walters, R. Moussalli, S. Gao, M. French,
“The PowerPC 405 Memory Sentinel and Injection System,”
IEEE conference on Field Customizable Computing Machines,
May, 2011.
6 M. Bucciero, J. Walters, M. French, "The PowerPC 405
Memory Sentinel and Injection System," IEEE Symposium on
Field Customizeable Computing Machines, Salt Lake City, UT,
May, 2011
7 Xilinx Virtex-4 PowerPC 405 Errata,
http://www.xilinx.com/support/answers/20658.htm, 2011.

